Suppr超能文献

大规模流行病学研究ESSE-RF中嗜睡的预测因素。

Predictors of sleepiness in a large-scale epidemiology study ESSE-RF.

作者信息

Bochkarev Mikhail, Korostovtseva Lyudmila, Rotar Oxana, Verbitskaya Elena, Sviryaev Yurii, Zhernakova Yulia, Shalnova Svetlana, Konradi Alexandra, Chazova Irina, Boytsov Sergey, Shlyakhto Evgeny

机构信息

Almazov National Medical Research Centre, Saint Petersburg, Russia.

Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia.

出版信息

Front Neurol. 2024 Sep 4;15:1431821. doi: 10.3389/fneur.2024.1431821. eCollection 2024.

Abstract

INTRODUCTION

To identify predictors of excessive daytime sleepiness we analyzed data from the 'Epidemiology of cardiovascular diseases in regions of Russia (ESSE-RF)' study.

METHODS

Data from participants of the cohort study ESSE-RF (2012-2013), aged 25-64 years, from 13 regions of Russia were analyzed (2012-2013). The participants were interviewed regarding their sleep complaints, including difficulties with initiating and maintaining sleep, sleepiness, and use of sleeping pills. Sleepiness was considered significant if it occurred at least three times a week. The examination encompassed social, demographic, and anthropometric measures, lifestyle factors, self-reported diseases, and laboratory parameters. The final analysis included 13,255 respondents.

RESULTS

Frequent (≥3 times/week) sleepiness was reported by 5,8%, and occasional sleepiness (1-2 times/week) by 10.8% of respondents. Multivariate regression analysis identified significant predictors of frequent sleepiness. Sleep complaints (insomnia, sleep apnea, snoring) and frequent use of sleep medication were prominent factors. Additionally, age, female gender, higher education, and retirement status were associated with sleepiness. Beyond demographics and sleep, the analysis revealed predictors: abnormal anxiety levels, low high-density lipoprotein, high salt intake and following medical conditions: arrhythmia, hypertension, myocardial infarction, other heart diseases, and renal disease.

CONCLUSION

This study identified a significant prevalence of EDS in Russians, aligning with global trends. However, findings suggest potential regional variations. Analysis revealed a complex interplay of factors contributing to EDS, highlighting the importance of individualized treatment approaches for improved sleep health.

摘要

引言

为了确定日间过度嗜睡的预测因素,我们分析了来自“俄罗斯地区心血管疾病流行病学(ESSE-RF)”研究的数据。

方法

对ESSE-RF队列研究(2012 - 2013年)中来自俄罗斯13个地区、年龄在25 - 64岁的参与者的数据进行了分析(2012 - 2013年)。就他们的睡眠问题对参与者进行了访谈,包括入睡困难、维持睡眠困难、嗜睡以及安眠药的使用情况。如果嗜睡每周至少发生三次,则被认为是显著的。检查涵盖了社会、人口统计学和人体测量学指标、生活方式因素、自我报告的疾病以及实验室参数。最终分析纳入了13255名受访者。

结果

5.8%的受访者报告频繁(≥每周3次)嗜睡,10.8%的受访者偶尔嗜睡(每周1 - 2次)。多变量回归分析确定了频繁嗜睡的显著预测因素。睡眠问题(失眠、睡眠呼吸暂停、打鼾)以及频繁使用睡眠药物是突出因素。此外,年龄、女性性别、高等教育程度和退休状态与嗜睡有关。除了人口统计学和睡眠因素外,分析还揭示了其他预测因素:焦虑水平异常、高密度脂蛋白水平低、高盐摄入以及以下疾病:心律失常、高血压、心肌梗死、其他心脏病和肾病。

结论

本研究发现俄罗斯人群中EDS的患病率较高,与全球趋势一致。然而,研究结果表明可能存在地区差异。分析揭示了导致EDS的多种因素之间复杂的相互作用,凸显了采用个性化治疗方法改善睡眠健康的重要性。

相似文献

1
Predictors of sleepiness in a large-scale epidemiology study ESSE-RF.大规模流行病学研究ESSE-RF中嗜睡的预测因素。
Front Neurol. 2024 Sep 4;15:1431821. doi: 10.3389/fneur.2024.1431821. eCollection 2024.
3
[Sleep disorders and stroke: data of the esse-rf study].[睡眠障碍与中风:ESSE-RF研究数据]
Zh Nevrol Psikhiatr Im S S Korsakova. 2019;119(4. Vyp. 2):73-80. doi: 10.17116/jnevro201911904273.

本文引用的文献

3
Determinants of Daytime Sleepiness Among Middle-Aged Adults.中年成年人日间嗜睡的决定因素
Clin Nurs Res. 2023 Mar;32(3):571-579. doi: 10.1177/10547738231156148. Epub 2023 Feb 22.
5
Understanding and approaching excessive daytime sleepiness.理解并应对日间过度嗜睡
Lancet. 2022 Sep 24;400(10357):1033-1046. doi: 10.1016/S0140-6736(22)01018-2. Epub 2022 Sep 14.
7
Sleep, insomnia and mental health.睡眠、失眠与心理健康。
J Sleep Res. 2022 Aug;31(4):e13628. doi: 10.1111/jsr.13628. Epub 2022 May 4.
9
[THE PREVALENCE OF SLEEPINESS IN THE POPULATION OF ONE OF THE REGIONS OF RUSSIA].[俄罗斯某地区人群中的嗜睡患病率]
Probl Sotsialnoi Gig Zdravookhranenniiai Istor Med. 2020 Oct;28(Special Issue):1113-1117. doi: 10.32687/0869-866X-2020-28-s2-1113-1117.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验