Zhen Meixin, Chen Haibing, Lu Qing, Li Hui, Yan Huang, Wang Ling
Xiangya College of Nursing, Central South University, Changsha, Hunan, 410013, People's Republic of China.
Nursing Department, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.
Cancer Manag Res. 2024 Sep 14;16:1253-1265. doi: 10.2147/CMAR.S460811. eCollection 2024.
To construct a free and accurate breast cancer mortality prediction tool by incorporating lifestyle factors, aiming to assist healthcare professionals in making informed decisions.
In this retrospective study, we utilized a ten-year follow-up dataset of female breast cancer patients from a major Chinese hospital and included 1,390 female breast cancer patients with a 7% (96) mortality rate. We employed six machine learning algorithms (ridge regression, k-nearest neighbors, neural network, random forest, support vector machine, and extreme gradient boosting) to construct a mortality prediction model for breast cancer.
This model incorporated significant lifestyle factors, such as postsurgery sexual activity, use of totally implantable venous access ports, and prosthetic breast wear, which were identified as independent protective factors. Meanwhile, ten-fold cross-validation demonstrated the superiority of the random forest model (average AUC = 0.918; 1-year AUC = 0.914, 2-year AUC = 0.867, 3-year AUC = 0.883). External validation further supported the model's robustness (average AUC = 0.782; 1-year AUC = 0.809, 2-year AUC = 0.785, 3-year AUC = 0.893). Additionally, a free and user-friendly web tool was developed using the Shiny framework to facilitate easy access to the model.
Our breast cancer mortality prediction model is free and accurate, providing healthcare professionals with valuable information to support their clinical decisions and potentially promoting healthier lifestyles for breast cancer patients.
通过纳入生活方式因素构建一个免费且准确的乳腺癌死亡率预测工具,旨在帮助医疗保健专业人员做出明智决策。
在这项回顾性研究中,我们利用了一家大型中国医院的女性乳腺癌患者十年随访数据集,纳入了1390名女性乳腺癌患者,死亡率为7%(96例)。我们采用了六种机器学习算法(岭回归、k近邻、神经网络、随机森林、支持向量机和极端梯度提升)来构建乳腺癌死亡率预测模型。
该模型纳入了重要的生活方式因素,如术后性活动、完全植入式静脉通路端口的使用以及佩戴假乳房,这些被确定为独立的保护因素。同时,十折交叉验证证明了随机森林模型的优越性(平均AUC = 0.918;1年AUC = 0.914,2年AUC = 0.867,3年AUC = 0.883)。外部验证进一步支持了该模型的稳健性(平均AUC = 0.782;1年AUC = 0.809,2年AUC = 0.785,3年AUC = 0.893)。此外,使用Shiny框架开发了一个免费且用户友好的网络工具,以便于访问该模型。
我们的乳腺癌死亡率预测模型免费且准确,为医疗保健专业人员提供了有价值的信息,以支持他们的临床决策,并可能促进乳腺癌患者更健康的生活方式。