Suppr超能文献

基于双 U-Net 与联邦学习的 CNNRF 模型分割协同作用增强脑肿瘤分析

Segmentation Synergy with a Dual U-Net and Federated Learning with CNNRF Models for Enhanced Brain Tumor Analysis.

机构信息

Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India.

Computer Science and Engineering, Graphic Era Hill University, Dehradun, Uttarakhand, India.

出版信息

Curr Med Imaging. 2024;20:e15734056312765. doi: 10.2174/0115734056312765240905104112.

Abstract

BACKGROUND

Brain tumours represent a diagnostic challenge, especially in the imaging area, where the differentiation of normal and pathologic tissues should be precise. The use of up-to-date machine learning techniques would be of great help in terms of brain tumor identification accuracy from MRI data. Objective This research paper aims to check the efficiency of a federated learning method that joins two classifiers, such as convolutional neural networks (CNNs) and random forests (R.F.F.), with dual U-Net segmentation for federated learning. This procedure benefits the image identification task on preprocessed MRI scan pictures that have already been categorized.

METHODS

In addition to using a variety of datasets, federated learning was utilized to train the CNN-RF model while taking data privacy into account. The processed MRI images with Median, Gaussian, and Wiener filters are used to filter out the noise level and make the feature extraction process easy and efficient. The surgical part used a dual U-Net layout, and the performance assessment was based on precision, recall, F1-score, and accuracy.

RESULTS

The model achieved excellent classification performance on local datasets as CRPs were high, from 91.28% to 95.52% for macro, micro, and weighted averages. Throughout the process of federated averaging, the collective model outperformed by reaching 97% accuracy compared to those of 99%, which were subjected to different clients. The correctness of how data is used helps the federated averaging method convert individual model insights into a consistent global model while keeping all personal data private.

CONCLUSION

The combined structure of the federated learning framework, CNN-RF hybrid model, and dual U-Net segmentation is a robust and privacypreserving approach for identifying MRI images from brain tumors. The results of the present study exhibited that the technique is promising in improving the quality of brain tumor categorization and provides a pathway for practical utilization in clinical settings.

摘要

背景

脑肿瘤是一个诊断挑战,尤其是在成像领域,这里需要对正常和病理组织进行准确区分。使用最新的机器学习技术将有助于提高从 MRI 数据中识别脑肿瘤的准确性。目的:本研究旨在检查联合分类器(如卷积神经网络(CNN)和随机森林(RF))和双 U-Net 分割的联邦学习方法的效率,用于联邦学习。该方法有利于对预处理的 MRI 扫描图像进行图像识别,这些图像已经经过分类。

方法

除了使用各种数据集外,还考虑到数据隐私问题,利用联邦学习来训练 CNN-RF 模型。使用中值、高斯和维纳滤波器对处理后的 MRI 图像进行滤波,以降低噪声水平,使特征提取过程简单高效。手术部分采用双 U-Net 布局,性能评估基于精度、召回率、F1 得分和准确性。

结果

该模型在本地数据集上实现了出色的分类性能,CRPs 较高,宏观、微观和加权平均值分别为 91.28%到 95.52%。在联邦平均化过程中,整体模型的表现优于那些针对不同客户的达到 99%精度的模型。数据使用的正确性有助于联邦平均化方法将个体模型的见解转化为一致的全局模型,同时保持所有个人数据的隐私。

结论

联邦学习框架、CNN-RF 混合模型和双 U-Net 分割的联合结构是一种强大的、保护隐私的方法,用于识别 MRI 图像中的脑肿瘤。本研究的结果表明,该技术有望提高脑肿瘤分类的质量,并为临床实际应用提供途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验