Suppr超能文献

用于手语识别的基于石墨烯/碳纳米管的机器学习辅助手势传感器。

Machine Learning-Assisted Gesture Sensor Made with Graphene/Carbon Nanotubes for Sign Language Recognition.

作者信息

Shen Hao-Yuan, Li Yu-Tao, Liu Hang, Lin Jie, Zhao Lu-Yu, Li Guo-Peng, Wu Yi-Wen, Ren Tian-Ling, Wang Yeliang

机构信息

School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China.

College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.

出版信息

ACS Appl Mater Interfaces. 2024 Oct 2;16(39):52911-52920. doi: 10.1021/acsami.4c10872. Epub 2024 Sep 19.

Abstract

Gesture sensors are essential to collect human movements for human-computer interfaces, but their application is normally hampered by the difficulties in achieving high sensitivity and an ultrawide response range simultaneously. In this article, inspired by the spider silk structure in nature, a novel gesture sensor with a core-shell structure is proposed. The sensor offers a high gauge factor of up to 340 and a wide response range of 60%. Moreover, the sensor combining with a deep learning technique creates a system for precise gesture recognition. The system demonstrated an impressive 99% accuracy in single gesture recognition tests. Meanwhile, by using the sliding window technology and large language model, a high performance of 97% accuracy is achieved in continuous sentence recognition. In summary, the proposed high-performance sensor significantly improves the sensitivity and response range of the gesture recognition sensor. Meanwhile, the neural network technology is combined to further improve the way of daily communication by sign language users.

摘要

手势传感器对于收集用于人机界面的人体动作至关重要,但其应用通常因难以同时实现高灵敏度和超宽响应范围而受到阻碍。在本文中,受自然界蜘蛛丝结构的启发,提出了一种具有核壳结构的新型手势传感器。该传感器具有高达340的高应变片系数和60%的宽响应范围。此外,该传感器与深度学习技术相结合,创建了一个用于精确手势识别的系统。该系统在单手势识别测试中表现出令人印象深刻的99%的准确率。同时,通过使用滑动窗口技术和大语言模型,在连续句子识别中实现了97%的高性能准确率。总之,所提出的高性能传感器显著提高了手势识别传感器的灵敏度和响应范围。同时,结合神经网络技术进一步改善了手语使用者的日常交流方式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验