Suppr超能文献

基于机器学习的手势识别手套:设计与实现。

Machine Learning-Based Gesture Recognition Glove: Design and Implementation.

机构信息

Department of Medical Informatics and Artificial Intelligence, Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800 Zabrze, Poland.

Department of Telecommunications and Teleinformatics, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland.

出版信息

Sensors (Basel). 2024 Sep 23;24(18):6157. doi: 10.3390/s24186157.

Abstract

In the evolving field of human-computer interaction (HCI), gesture recognition has emerged as a critical focus, with smart gloves equipped with sensors playing one of the most important roles. Despite the significance of dynamic gesture recognition, most research on data gloves has concentrated on static gestures, with only a small percentage addressing dynamic gestures or both. This study explores the development of a low-cost smart glove prototype designed to capture and classify dynamic hand gestures for game control and presents a prototype of data gloves equipped with five flex sensors, five force sensors, and one inertial measurement unit (IMU) sensor. To classify dynamic gestures, we developed a neural network-based classifier, utilizing a convolutional neural network (CNN) with three two-dimensional convolutional layers and rectified linear unit (ReLU) activation where its accuracy was 90%. The developed glove effectively captures dynamic gestures for game control, achieving high classification accuracy, precision, and recall, as evidenced by the confusion matrix and training metrics. Despite limitations in the number of gestures and participants, the solution offers a cost-effective and accurate approach to gesture recognition, with potential applications in VR/AR environments.

摘要

在人机交互(HCI)不断发展的领域中,手势识别已成为一个关键焦点,配备传感器的智能手套在此扮演着最重要的角色之一。尽管动态手势识别具有重要意义,但大多数数据手套的研究都集中在静态手势上,只有一小部分研究涉及动态手势或两者兼而有之。本研究探讨了一种低成本智能手套原型的开发,该原型旨在捕捉和分类用于游戏控制的动态手部手势,并展示了一种配备五个弯曲传感器、五个力传感器和一个惯性测量单元(IMU)传感器的数据手套原型。为了对动态手势进行分类,我们开发了一个基于神经网络的分类器,利用具有三个二维卷积层和修正线性单元(ReLU)激活的卷积神经网络(CNN),其准确率为 90%。所开发的手套可有效捕捉用于游戏控制的动态手势,分类精度、准确率和召回率均较高,这一点可从混淆矩阵和训练指标中得到证明。尽管存在手势和参与者数量的限制,但该解决方案提供了一种经济高效且准确的手势识别方法,具有在 VR/AR 环境中的潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1381/11435472/f637781a6775/sensors-24-06157-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验