Mayourian Joshua, van Boxtel Juul P A, Sleeper Lynn A, Diwanji Vedang, Geva Alon, O'Leary Edward T, Triedman John K, Ghelani Sunil J, Wald Rachel M, Valente Anne Marie, Geva Tal
Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA.
Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
JACC Clin Electrophysiol. 2024 Dec;10(12):2600-2612. doi: 10.1016/j.jacep.2024.07.015. Epub 2024 Sep 18.
Artificial intelligence-enhanced electrocardiogram (AI-ECG) analysis shows promise to predict mortality in adults with acquired cardiovascular diseases. However, its application to the growing repaired tetralogy of Fallot (rTOF) population remains unexplored.
This study aimed to develop and externally validate an AI-ECG model to predict 5-year mortality in rTOF.
A convolutional neural network was trained on electrocardiograms (ECGs) obtained at Boston Children's Hospital and tested on Boston (internal testing) and Toronto (external validation) INDICATOR (International Multicenter TOF Registry) cohorts to predict 5-year mortality. Model performance was evaluated on single ECGs per patient using area under the receiver operating (AUROC) and precision recall (AUPRC) curves.
The internal testing and external validation cohorts comprised of 1,054 patients (13,077 ECGs at median age 17.8 [Q1-Q3: 7.9-30.5] years; 54% male; 6.1% mortality) and 335 patients (5,014 ECGs at median age 38.3 [Q1-Q3: 29.1-48.7] years; 57% male; 8.4% mortality), respectively. Model performance was similar during internal testing (AUROC 0.83, AUPRC 0.18) and external validation (AUROC 0.81, AUPRC 0.21). AI-ECG performed similarly to the biventricular global function index (an imaging biomarker) and outperformed QRS duration. AI-ECG 5-year mortality prediction, but not QRS duration, was a significant independent predictor when added into a Cox regression model with biventricular global function index to predict shorter time-to-death on internal and external cohorts. Saliency mapping identified QRS fragmentation, wide and low amplitude QRS complexes, and flattened T waves as high-risk features.
This externally validated AI-ECG model may complement imaging biomarkers to improve risk stratification in patients with rTOF.
人工智能增强型心电图(AI-ECG)分析有望预测患有后天性心血管疾病的成年人的死亡率。然而,其在不断增加的法洛四联症修复术后(rTOF)人群中的应用仍未得到探索。
本研究旨在开发并外部验证一种AI-ECG模型,以预测rTOF患者的5年死亡率。
在波士顿儿童医院获取的心电图(ECG)上训练卷积神经网络,并在波士顿(内部测试)和多伦多(外部验证)的INDICATOR(国际多中心TOF注册库)队列中进行测试,以预测5年死亡率。使用受试者操作特征曲线下面积(AUROC)和精确召回率(AUPRC)曲线,对每位患者的单份ECG评估模型性能。
内部测试队列和外部验证队列分别包括1054例患者(13077份ECG,中位年龄17.8岁[四分位间距:7.9 - 30.5岁];54%为男性;死亡率6.1%)和335例患者(5014份ECG,中位年龄38.3岁[四分位间距:29.1 - 48.7岁];57%为男性;死亡率8.4%)。内部测试(AUROC 0.83,AUPRC 0.18)和外部验证(AUROC 0.81,AUPRC 0.21)期间模型性能相似。AI-ECG的表现与双心室整体功能指数(一种影像生物标志物)相似,且优于QRS时限。当将AI-ECG的5年死亡率预测指标而非QRS时限加入到包含双心室整体功能指数的Cox回归模型中,以预测内部和外部队列中较短的死亡时间时,AI-ECG是一个显著的独立预测指标。显著性映射确定QRS波碎裂、宽而低振幅的QRS波群以及T波低平为高风险特征。
这种经过外部验证的AI-ECG模型可能补充影像生物标志物,以改善rTOF患者的风险分层。