Mayourian Joshua, Asztalos Ivor B, El-Bokl Amr, Lukyanenko Platon, Kobayashi Ryan L, La Cava William G, Ghelani Sunil J, Vetter Victoria L, Triedman John K
Department of Cardiology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
Division of Pediatric Cardiology, Perelman School of Medicine at the University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
Lancet Digit Health. 2025 Apr;7(4):e264-e274. doi: 10.1016/j.landig.2025.01.001.
Left ventricular systolic dysfunction (LVSD) is independently associated with cardiovascular events in patients with congenital heart disease. Although artificial intelligence-enhanced electrocardiogram (AI-ECG) analysis is predictive of LVSD in the general adult population, it has yet to be applied comprehensively across congenital heart disease lesions.
We trained a convolutional neural network on paired ECG-echocardiograms (≤2 days apart) across the lifespan of a wide range of congenital heart disease lesions to detect left ventricular ejection fraction (LVEF) of 40% or less. Model performance was evaluated on single ECG-echocardiogram pairs per patient at Boston Children's Hospital (Boston, MA, USA) and externally at the Children's Hospital of Philadelphia (Philadelphia, PA, USA) using area under the receiver operating (AUROC) and precision-recall (AUPRC) curves.
The training cohort comprised 124 265 ECG-echocardiogram pairs (49 158 patients; median age 10·5 years [IQR 3·5-16·8]; 3381 [2·7%] of 124 265 ECG-echocardiogram pairs with LVEF ≤40%). Test groups included internal testing (21 068 patients; median age 10·9 years [IQR 3·7-17·0]; 3381 [2·7%] of 124 265 ECG-echocardiogram pairs with LVEF ≤40%) and external validation (42 984 patients; median age 10·8 years [IQR 4·9-15·0]; 1313 [1·7%] of 76 400 ECG-echocardiogram pairs with LVEF ≤40%) cohorts. High model performance was achieved during internal testing (AUROC 0·95, AUPRC 0·33) and external validation (AUROC 0·96, AUPRC 0·25) for a wide range of congenital heart disease lesions. Patients with LVEF greater than 40% by echocardiogram who were deemed high risk by AI-ECG were more likely to have future dysfunction compared with low-risk patients (hazard ratio 12·1 [95% CI 8·4-17·3]; p<0·0001). High-risk patients by AI-ECG were at increased risk of mortality in the overall cohort and lesion-specific subgroups. Common salient features highlighted across congenital heart disaese lesions include precordial QRS complexes and T waves, with common high-risk ECG features including deep V2 S waves and lateral precordial T wave inversion. A case study on patients with ventricular pacing showed similar findings.
Our externally validated algorithm shows promise in prediction of current and future LVSD in patients with congenital heart disease, providing a clinically impactful, inexpensive, and convenient cardiovascular health tool in this population.
Kostin Innovation Fund, Thrasher Research Fund Early Career Award, Boston Children's Hospital Electrophysiology Research Education Fund, National Institutes of Health, National Institute of Childhood Diseases and Human Development, and National Library of Medicine.
左心室收缩功能障碍(LVSD)与先天性心脏病患者的心血管事件独立相关。尽管人工智能增强心电图(AI-ECG)分析可预测一般成年人群的LVSD,但尚未在先天性心脏病病变中全面应用。
我们在广泛的先天性心脏病病变患者的整个生命周期内,对配对的心电图-超声心动图(间隔≤2天)进行卷积神经网络训练,以检测左心室射血分数(LVEF)≤40%的情况。在美国波士顿儿童医院(马萨诸塞州波士顿),对每位患者的单份心电图-超声心动图对进行模型性能评估,并在美国费城儿童医院(宾夕法尼亚州费城)进行外部评估,使用受试者操作特征曲线下面积(AUROC)和精确召回率曲线下面积(AUPRC)。
训练队列包括124265对心电图-超声心动图(49158例患者;中位年龄10.5岁[四分位间距3.5 - 16.8岁];124265对心电图-超声心动图中3381对[2.7%]的LVEF≤40%)。测试组包括内部测试(21068例患者;中位年龄10.9岁[四分位间距3.7 - 17.0岁];124265对心电图-超声心动图中3381对[2.7%]的LVEF≤40%)和外部验证(42984例患者;中位年龄10.8岁[四分位间距4.9 - 15.0岁];76400对心电图-超声心动图中1313对[1.7%]的LVEF≤40%)队列。在内部测试(AUROC 0.95,AUPRC 0.33)和外部验证(AUROC 0.96,AUPRC 0.25)中,对于广泛的先天性心脏病病变,模型均表现出高性能。与低风险患者相比,超声心动图显示LVEF大于40%但被AI-ECG判定为高风险的患者未来更有可能出现功能障碍(风险比12.1[95%置信区间8.4 - 17.3];p<0.0001)。在整个队列和病变特异性亚组中,AI-ECG判定的高风险患者死亡风险增加。先天性心脏病病变中突出的常见显著特征包括胸前导联QRS波群和T波,常见的高风险心电图特征包括V2导联S波加深和胸前导联外侧T波倒置。一项关于心室起搏患者的案例研究也显示了类似结果。
我们经过外部验证的算法在预测先天性心脏病患者当前和未来的LVSD方面显示出前景,为该人群提供了一种具有临床意义、廉价且便捷的心血管健康工具。
科斯廷创新基金、思拉舍研究基金早期职业奖、波士顿儿童医院电生理研究教育基金、美国国立卫生研究院、国家儿童疾病与人类发展研究所和国家医学图书馆。