Suppr超能文献

使用深度神经网络对儿科心电图进行专家级自动诊断

Expert-Level Automated Diagnosis of the Pediatric ECG Using a Deep Neural Network.

作者信息

Mayourian Joshua, La Cava William G, de Ferranti Sarah D, Mah Douglas, Alexander Mark, Walsh Edward, Triedman John K

机构信息

Department of Cardiology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA.

Computational Health Informatics Program, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

JACC Clin Electrophysiol. 2025 Mar 1. doi: 10.1016/j.jacep.2025.02.003.

Abstract

BACKGROUND

Disparate access to expert pediatric cardiologist care and interpretation of electrocardiograms (ECGs) persists worldwide. Artificial intelligence-enhanced ECG (AI-ECG) has shown promise for automated diagnosis of ECGs in adults but has yet to be explored in the pediatric setting.

OBJECTIVES

This study sought to determine whether an AI-ECG model can accurately perform automated diagnosis of pediatric ECGs.

METHODS

This retrospective single-center cohort study included all patients with an ECG at Boston Children's Hospital read by an experienced pediatric cardiologist (≥5,000 reads) between 2000 and 2022. A convolutional neural network was trained (75% of patients) and internally tested (25% of patients) on ECGs to predict ECG diagnoses. The primary outcome was a composite of any ECG abnormality (ie, detecting normal vs abnormal ECG). Secondary outcomes include Wolff-Parkinson-White syndrome (WPW) and prolonged QTc. Model performance was assessed with area under the receiver-operating (AUROC) and precision recall (AUPRC) curves.

RESULTS

The main cohort consisted of 201,620 patients (49% male; 11% with known congenital heart disease) and 583,134 ECGs (median age 11.7 years [Q1-Q3: 3.1-16.9 years]; 56% any ECG abnormality, 1.0% WPW, and 5.3% with prolonged QTc). The AI-ECG model outperformed the commercial software interpretations for detecting any abnormality (AUROC 0.94; AUPRC 0.96), WPW (AUROC 0.99; AUPRC 0.88), and prolonged QTc (AUROC 0.96; AUPRC 0.63). During readjudication of ECGs with AI-ECG/original cardiologist read discordance, blinded expert readers were more likely to agree with AI-ECG classification than the original reader to detect any abnormality (P = 0.001), WPW (P = 0.01), and prolonged QTc (P = 0.07).

CONCLUSIONS

Our model provides expert-level automated diagnosis of the pediatric 12-lead ECG, which may improve access to care.

摘要

背景

在全球范围内,获得专业儿科心脏病专家的护理以及心电图(ECG)解读的机会存在差异。人工智能增强心电图(AI-ECG)在成人心电图自动诊断方面已显示出前景,但在儿科领域尚未得到探索。

目的

本研究旨在确定AI-ECG模型是否能准确地对儿科心电图进行自动诊断。

方法

这项回顾性单中心队列研究纳入了2000年至2022年间在波士顿儿童医院接受过经验丰富的儿科心脏病专家(≥5000次解读)解读心电图的所有患者。在心电图上训练(75%的患者)并内部测试(25%的患者)一个卷积神经网络,以预测心电图诊断。主要结局是任何心电图异常的综合情况(即检测正常与异常心电图)。次要结局包括预激综合征(WPW)和QTc延长。通过受试者操作特征曲线下面积(AUROC)和精确召回率(AUPRC)曲线评估模型性能。

结果

主要队列包括201,620名患者(49%为男性;11%患有已知先天性心脏病)和583,134份心电图(中位年龄11.7岁[四分位间距:3.1 - 16.9岁];56%存在任何心电图异常,1.0%为WPW,5.3%为QTc延长)。AI-ECG模型在检测任何异常(AUROC 0.94;AUPRC 0.96)、WPW(AUROC 0.99;AUPRC 0.88)和QTc延长(AUROC 0.96;AUPRC 0.63)方面优于商业软件解读。在对AI-ECG/原心脏病专家解读不一致的心电图进行重新判定时,与原解读医生相比,不知情的专家读者更有可能认同AI-ECG的分类来检测任何异常(P = 0.001)、WPW(P = 0.01)和QTc延长(P = 0.07)。

结论

我们的模型提供了专家级别的儿科1十二导联心电图自动诊断,这可能会改善医疗服务的可及性。 1此处原文为“pediatric 12-lead ECG”,翻译为“儿科12导联心电图”,“12-lead”直译为“12导联”,“pediatric”为“儿科的”,“ECG”为“心电图”,整体即“儿科12导联心电图”,但从中文表达习惯看,“儿科1十二导联心电图”表述稍显奇怪,不过按照要求不能添加解释,所以保留此翻译。若可添加解释,可改为“儿科12导联心电图”

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验