Suppr超能文献

基于儿科心电图的深度学习预测左心室功能障碍和重构。

Pediatric ECG-Based Deep Learning to Predict Left Ventricular Dysfunction and Remodeling.

机构信息

Department of Cardiology (J.M., S.J.G., T.G., A.D., M.E.A., J.K.T.), Boston Children's Hospital, MA.

Department of Pediatrics (J.M., W.G.L.C., S.J.G., T.G., A.D., M.E.A., J.K.T.), Boston, MA.

出版信息

Circulation. 2024 Mar 19;149(12):917-931. doi: 10.1161/CIRCULATIONAHA.123.067750. Epub 2024 Feb 5.

Abstract

BACKGROUND

Artificial intelligence-enhanced ECG analysis shows promise to detect ventricular dysfunction and remodeling in adult populations. However, its application to pediatric populations remains underexplored.

METHODS

A convolutional neural network was trained on paired ECG-echocardiograms (≤2 days apart) from patients ≤18 years of age without major congenital heart disease to detect human expert-classified greater than mild left ventricular (LV) dysfunction, hypertrophy, and dilation (individually and as a composite outcome). Model performance was evaluated on single ECG-echocardiogram pairs per patient at Boston Children's Hospital and externally at Mount Sinai Hospital using area under the receiver operating characteristic curve (AUROC) and area under the precision-recall curve (AUPRC).

RESULTS

The training cohort comprised 92 377 ECG-echocardiogram pairs (46 261 patients; median age, 8.2 years). Test groups included internal testing (12 631 patients; median age, 8.8 years; 4.6% composite outcomes), emergency department (2830 patients; median age, 7.7 years; 10.0% composite outcomes), and external validation (5088 patients; median age, 4.3 years; 6.1% composite outcomes) cohorts. Model performance was similar on internal test and emergency department cohorts, with model predictions of LV hypertrophy outperforming the pediatric cardiologist expert benchmark. Adding age and sex to the model added no benefit to model performance. When using quantitative outcome cutoffs, model performance was similar between internal testing (composite outcome: AUROC, 0.88, AUPRC, 0.43; LV dysfunction: AUROC, 0.92, AUPRC, 0.23; LV hypertrophy: AUROC, 0.88, AUPRC, 0.28; LV dilation: AUROC, 0.91, AUPRC, 0.47) and external validation (composite outcome: AUROC, 0.86, AUPRC, 0.39; LV dysfunction: AUROC, 0.94, AUPRC, 0.32; LV hypertrophy: AUROC, 0.84, AUPRC, 0.25; LV dilation: AUROC, 0.87, AUPRC, 0.33), with composite outcome negative predictive values of 99.0% and 99.2%, respectively. Saliency mapping highlighted ECG components that influenced model predictions (precordial QRS complexes for all outcomes; T waves for LV dysfunction). High-risk ECG features include lateral T-wave inversion (LV dysfunction), deep S waves in V1 and V2 and tall R waves in V6 (LV hypertrophy), and tall R waves in V4 through V6 (LV dilation).

CONCLUSIONS

This externally validated algorithm shows promise to inexpensively screen for LV dysfunction and remodeling in children, which may facilitate improved access to care by democratizing the expertise of pediatric cardiologists.

摘要

背景

人工智能增强的心电图分析有望检测成年人群中的心室功能障碍和重构。然而,其在儿科人群中的应用仍未得到充分探索。

方法

在没有重大先天性心脏病的≤18 岁患者的配对心电图-超声心动图(≤2 天)上训练卷积神经网络,以检测人类专家分类的大于轻度左心室(LV)功能障碍、肥大和扩张(单独和作为复合结果)。使用接收者操作特征曲线下面积(AUROC)和精度-召回曲线下面积(AUPRC)在波士顿儿童医院的内部测试组和西奈山医院的外部进行模型性能评估。

结果

训练队列包括 92377 对心电图-超声心动图(46261 例患者;中位年龄 8.2 岁)。测试组包括内部测试(12631 例患者;中位年龄 8.8 岁;复合结果发生率为 4.6%)、急诊部(2830 例患者;中位年龄 7.7 岁;复合结果发生率为 10.0%)和外部验证(5088 例患者;中位年龄 4.3 岁;复合结果发生率为 6.1%)队列。内部测试和急诊部队列的模型性能相似,LV 肥大的模型预测结果优于儿科心脏病专家的基准。向模型中添加年龄和性别并不能提高模型性能。当使用定量结果截止值时,内部测试(复合结果:AUROC,0.88,AUPRC,0.43;LV 功能障碍:AUROC,0.92,AUPRC,0.23;LV 肥大:AUROC,0.88,AUPRC,0.28;LV 扩张:AUROC,0.91,AUPRC,0.47)和外部验证(复合结果:AUROC,0.86,AUPRC,0.39;LV 功能障碍:AUROC,0.94,AUPRC,0.32;LV 肥大:AUROC,0.84,AUPRC,0.25;LV 扩张:AUROC,0.87,AUPRC,0.33)的性能相似,复合结果的阴性预测值分别为 99.0%和 99.2%。显著图突出显示了影响模型预测的心电图成分(所有结果的胸前 QRS 复合体;LV 功能障碍的 T 波)。高危心电图特征包括外侧 T 波倒置(LV 功能障碍)、V1 和 V2 中的深 S 波和 V6 中的高 R 波(LV 肥大)以及 V4 到 V6 的高 R 波(LV 扩张)。

结论

这种经过外部验证的算法有望以经济的方式筛查儿童的 LV 功能障碍和重构,这可能通过民主化儿科心脏病专家的专业知识来改善获得护理的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30f8/10948312/d95a2bb94a3f/nihms-1960426-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验