Fang Mingwei, Miao Xiang, Huang Zihao, Wang Meiling, Feng Xiaochen, Wang Zewen, Zhu Ying, Dai Liming, Jiang Lei
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China.
Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China.
J Am Chem Soc. 2024 Oct 2;146(39):27060-27069. doi: 10.1021/jacs.4c09168. Epub 2024 Sep 19.
Electrosynthesis of multicarbon products, such as CH, from CO reduction on copper (Cu) catalysts holds promise for achieving carbon neutrality. However, maintaining a steady high current-level CH electrosynthesis still encounters challenges, arising from unstable alkalinity and carbonate precipitation caused by undesired ion migration at the cathode under a repulsive electric field. To address these issues, we propose a universal "charge release" concept by incorporating tiny amounts of an oppositely charged anionic ionomer (e.g., perfluorinated sulfonic acid, PFSA) into a cationic covalent organic framework on the Cu surface (cCOF/PFSA). This strategy effectively releases the hidden positive charge within the cCOF, enhancing surface immobilization of cations to impede both outward migration of generated OH and inward migration of cations, inhibiting carbonate precipitation and creating a strong alkaline microenvironment. Meanwhile, the ionomer's hydrophobic chains create a hydrophobic environment within the cCOF, facilitating efficient gas transport. In situ characterizations and theoretical calculations demonstrate that the cCOF/PFSA catalyst establishes a hydrophobic strong alkaline microenvironment, optimizing the adsorption strength and configuration of *CO intermediates to promote the CH formation. The optimized catalyst achieves a 70.5% Faradaic efficiency for CH with a partial current density over 470 mA cm. Notably, it delivers a high single-pass carbon efficiency of 96.5% for CORR and sustains an exceptional stability over 760 h. When implemented in a large-area MEA electrolyzer and a 5-cell MEA stack, the system achieves an industrial current of 15 A and continuous CH production exceeding 19 mL min, marking a significant step toward industrial feasibility in CORR-to-CH conversion.
在铜(Cu)催化剂上通过CO还原电合成多碳产物(如CH)有望实现碳中和。然而,要维持稳定的高电流水平的CH电合成仍面临挑战,这是由于在排斥电场下阴极处不期望的离子迁移导致的碱度不稳定和碳酸盐沉淀。为了解决这些问题,我们提出了一个通用的“电荷释放”概念,即将少量带相反电荷的阴离子离聚物(如全氟磺酸,PFSA)掺入Cu表面的阳离子共价有机框架(cCOF/PFSA)中。该策略有效地释放了cCOF内隐藏的正电荷,增强了阳离子的表面固定,以阻止生成的OH向外迁移和阳离子向内迁移,抑制碳酸盐沉淀并创造一个强碱性微环境。同时,离聚物的疏水链在cCOF内创造了一个疏水环境,促进了高效的气体传输。原位表征和理论计算表明,cCOF/PFSA催化剂建立了一个疏水强碱性微环境,优化了*CO中间体的吸附强度和构型,以促进CH的形成。优化后的催化剂实现了70.5%的CH法拉第效率,部分电流密度超过470 mA cm。值得注意的是,它在CORR中实现了96.5%的高单通道碳效率,并在760 h以上保持了出色的稳定性。当应用于大面积MEA电解槽和5电池MEA堆栈时,该系统实现了15 A的工业电流和超过19 mL min的连续CH产量,标志着在CORR到CH转化方面朝着工业可行性迈出了重要一步。