Polesso Bárbara, Pinilla-Sánchez Adrián, Ahmed Eman H, Guha Anku, Dimitropoulos Marinos, Belsa Blanca, Golovanova Viktoria, Xia Lu, Ram Ranit, Kadam Sunil, Das Aparna M, Chen Junmei, Osmond Johann, Radek Martínez Adam, Micali Melanie, Alarcón Lladó Esther, García de Arquer F Pelayo
ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona) 08860, Spain.
NRC-National Research Centre, Polymers and Pigments Department, Chemical industries research institute, Advanced Materials and Nanotechnology group, Cairo 12622, Egypt.
J Am Chem Soc. 2025 Aug 6;147(31):27278-27288. doi: 10.1021/jacs.5c01314. Epub 2025 Jul 29.
CO electroreduction (COR) in acidic media offers a path to high carbon utilization via local carbonate regeneration. However, this proton-rich environment challenges achieving a combined selectivity and rate toward multicarbon (C) products due to proton and intermediate competition. Here, we demonstrate a strategy to modulate local protons and intermediates, at these settings, using a polyionomer coating over benchmark copper gas diffusion electrodes. The polyionomer integrates amine (-NH) function from branched polyethylenimine (PEI) with sulfonate (-SO) and amphiphilic functions from PFSA. We show that their chemical structure enables H-bonding interaction, leading to a stereochemical assembly that retains a structure-property relationship through a wide pH range (2-14). PFSA domains modulate *CO intermediates and local [CO]/[HO] and K environment, while partially protonated amines provide further control over proton availability and intermediate stabilization, which in combination enhance C-C coupling. When implemented in a flow cell (0.5 M K/HSO, pH = 2), the optimized polyionomer coating enables a C Faradaic efficiency of 61% at a single-pass CO utilization of 84%, including a conversion efficiency of 64% toward C, at a current density of at 0.3 A cm─an improvement of almost 30% in C selectivity and 35% in carbon utilization compared to monofunctional coatings. These findings expand the toolbox of strategies to modulate COR microenvironments toward improved performance.
酸性介质中的CO电还原(COR)通过局部碳酸盐再生为高碳利用率提供了一条途径。然而,由于质子和中间体的竞争,这种富含质子的环境对实现对多碳(C)产物的选择性和速率的综合控制提出了挑战。在此,我们展示了一种策略,即在基准铜气体扩散电极上使用聚离子聚合物涂层来调节这些条件下的局部质子和中间体。该聚离子聚合物将支化聚乙烯亚胺(PEI)的胺基(-NH)功能与磺酸基(-SO)以及全氟磺酸(PFSA)的两亲性功能整合在一起。我们表明,它们的化学结构能够实现氢键相互作用,导致立体化学组装,在很宽的pH范围(2-14)内保持结构-性质关系。PFSA域调节*CO中间体以及局部[CO]/[HO]和K环境,而部分质子化的胺进一步控制质子可用性和中间体稳定性,两者结合增强了C-C偶联。当在流动池中(0.5 M K/HSO,pH = 2)实施时,优化的聚离子聚合物涂层在单程CO利用率为84%的情况下,C法拉第效率达到61%,包括在电流密度为0.3 A cm时对C的转化效率为64%,与单功能涂层相比,C选择性提高了近30%,碳利用率提高了35%。这些发现扩展了调节COR微环境以提高性能的策略工具箱。