Laboratório de Biotecnologia Viral, Instituto Butantan, Av Vital Brasil 1500, CEP 05503-900, São Paulo, SP, Brazil.
Laboratório de Engenharia de Bioprocessos. Escola de Artes, Ciências e Humanidades (EACH), Universidade de São Paulo, Rua Arlindo Béttio, 1000, CEP 03828-000, São Paulo, SP, Brazil.
Biochem Biophys Res Commun. 2024 Nov 12;733:150671. doi: 10.1016/j.bbrc.2024.150671. Epub 2024 Sep 7.
In the current biopharmaceutical scenario, constant bioprocess monitoring is crucial for the quality and integrity of final products. Thus, process analytical techniques, such as those based on Raman spectroscopy, have been used as multiparameter tracking methods in pharma bioprocesses, which can be combined with chemometric tools, like Partial Least Squares (PLS) and Artificial Neural Networks (ANN). In some cases, applying spectra pre-processing techniques before modeling can improve the accuracy of chemometric model fittings to observed values. One of the biological applications of these techniques could have as a target the virus-like particles (VLP), a vaccine production platform for viral diseases. A disease that has drawn attention in recent years is Zika, with large-scale production sometimes challenging without an appropriate monitoring approach. This work aimed to define global models for Zika VLP upstream production monitoring with Raman considering different laser intensities (200 mW and 495 mW), sample clarification (with or without cells), spectra pre-processing approaches, and PLS and ANN modeling techniques. Six experiments were performed in a benchtop bioreactor to collect the Raman spectral and biochemical datasets for modeling calibration. The best models generated presented a mean absolute error and mean relative error respectively of 3.46 × 10 cell/mL and 35 % for viable cell density (Xv); 4.1 % and 5 % for cell viability (CV); 0.245 g/L and 3 % for glucose (Glc); 0.006 g/L and 18 % for lactate (Lac); 0.115 g/L and 26 % for glutamine (Gln); 0.132 g/L and 18 % for glutamate (Glu); 0.0029 g/L and 3 % for ammonium (NH); and 0.0103 g/L and 2 % for potassium (K). Sample without conditioning (with cells) improved the models' adequacy, except for Glutamine. ANN better predicted CV, Gln, Glu, and K+, while Xv, Glc, Lac, and NH presented no statistical difference between the chemometric tools. For most of the assessed experimental parameters, there was no statistical need for spectra pre-filtering, for which the models based on the raw spectra were selected as the best ones. Laser intensity impacts quality model predictions in some parameters, Xv, Gln, and K had a better performance with 200 mW of intensity (for PLS, ANN, and ANN, respectively), for CV the 495 mW laser intensity was better (for PLS), and for the other biochemical variables, the use of 200 or 495 mW did not impact model fitting adequacy.
在当前的生物制药领域,持续的生物过程监测对于最终产品的质量和完整性至关重要。因此,过程分析技术,如基于拉曼光谱的技术,已被用作制药生物工艺中的多参数跟踪方法,可与化学计量工具(如偏最小二乘法(PLS)和人工神经网络(ANN))结合使用。在某些情况下,在建模之前应用光谱预处理技术可以提高化学计量模型对观察值拟合的准确性。这些技术的一个生物应用可能是针对病毒样颗粒(VLP),这是一种用于病毒疾病的疫苗生产平台。近年来,寨卡病毒引起了人们的关注,有时如果没有适当的监测方法,大规模生产就会面临挑战。这项工作旨在使用拉曼光谱为 Zika VLP 上游生产监测定义全局模型,考虑到不同的激光强度(200 mW 和 495 mW)、样品澄清度(有或没有细胞)、光谱预处理方法以及 PLS 和 ANN 建模技术。在台式生物反应器中进行了六次实验,以收集用于建模校准的拉曼光谱和生化数据集。生成的最佳模型分别呈现出 3.46×10^cell/mL 和 35%的活细胞密度(Xv)的平均绝对误差和平均相对误差;4.1%和 5%的细胞活力(CV);0.245 g/L 和 3%的葡萄糖(Glc);0.006 g/L 和 18%的乳酸(Lac);0.115 g/L 和 26%的谷氨酰胺(Gln);0.132 g/L 和 18%的谷氨酸(Glu);0.0029 g/L 和 3%的氨(NH);和 0.0103 g/L 和 2%的钾(K)。未经预处理(有细胞)的样品提高了模型的适用性,除了谷氨酰胺。ANN 更好地预测了 CV、Gln、Glu 和 K+,而 Xv、Glc、Lac 和 NH 之间的化学计量工具没有统计学差异。对于大多数评估的实验参数,不需要对光谱进行统计预处理,因此选择基于原始光谱的模型作为最佳模型。激光强度会影响某些参数的质量模型预测,Xv、Gln 和 K 在强度为 200 mW 时表现更好(分别为 PLS、ANN 和 ANN),对于 CV,495 mW 激光强度更好(对于 PLS),而对于其他生化变量,使用 200 或 495 mW 不会影响模型拟合的适当性。