Moura Dias Felipe, Teruya Milena Miyu, Omae Camalhonte Samanta, Aragão Tejo Dias Vinícius, de Oliveira Guardalini Luis Giovani, Leme Jaci, Consoni Bernardino Thaissa, Sposito Felipe S, Dias Eduardo, Manciny Astray Renato, Tonso Aldo, Attie Calil Jorge Soraia, Fernández Núñez Eutimio Gustavo
Laboratório de Engenharia de Bioprocessos. Escola de Artes, Ciências E Humanidades (EACH), Universidade de São Paulo, Rua Arlindo Béttio, 1000, São Paulo, SP, CEP 03828-000, Brazil.
Laboratório de Biotecnologia Viral, Instituto Butantan, Av Vital Brasil 1500, São Paulo, SP, CEP 05503-900, Brazil.
Bioprocess Biosyst Eng. 2025 Jan;48(1):63-84. doi: 10.1007/s00449-024-03094-1. Epub 2024 Oct 9.
The present work focused on inline Raman spectroscopy monitoring of SARS-CoV-2 VLP production using two culture media by fitting chemometric models for biochemical parameters (viable cell density, cell viability, glucose, lactate, glutamine, glutamate, ammonium, and viral titer). For that purpose, linear, partial least square (PLS), and nonlinear approaches, artificial neural network (ANN), were used as correlation techniques to build the models for each variable. ANN approach resulted in better fitting for most parameters, except for viable cell density and glucose, whose PLS presented more suitable models. Both were statistically similar for ammonium. The mean absolute error of the best models, within the quantified value range for viable cell density (375,000-1,287,500 cell/mL), cell viability (29.76-100.00%), glucose (8.700-10.500 g/), lactate (0.019-0.400 g/L), glutamine (0.925-1.520 g/L), glutamate (0.552-1.610 g/L), viral titer (no virus quantified-7.505 log PFU/mL) and ammonium (0.0074-0.0478 g/L) were, respectively, 41,533 ± 45,273 cell/mL (PLS), 1.63 ± 1.54% (ANN), 0.058 ± 0.065 g/L (PLS), 0.007 ± 0.007 g/L (ANN), 0.007 ± 0.006 g/L (ANN), 0.006 ± 0.006 g/L (ANN), 0.211 ± 0.221 log PFU/mL (ANN), and 0.0026 ± 0.0026 g/L (PLS) or 0.0027 ± 0.0034 g/L (ANN). The correlation accuracy, errors, and best models obtained are in accord with studies, both online and offline approaches while using the same insect cell/baculovirus expression system or different cell host. Besides, the biochemical tracking throughout bioreactor runs using the models showed suitable profiles, even using two different culture media.
本研究聚焦于通过拟合生化参数(活细胞密度、细胞活力、葡萄糖、乳酸、谷氨酰胺、谷氨酸、铵和病毒滴度)的化学计量模型,利用两种培养基对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)病毒样颗粒(VLP)生产进行在线拉曼光谱监测。为此,采用线性、偏最小二乘法(PLS)和非线性方法——人工神经网络(ANN)作为相关技术,为每个变量建立模型。除活细胞密度和葡萄糖外,ANN方法对大多数参数的拟合效果更好,而活细胞密度和葡萄糖的PLS模型更合适。对于铵,两者在统计学上相似。在活细胞密度(375,000 - 1,287,500个细胞/毫升)、细胞活力(29.76 - 100.00%)、葡萄糖(8.700 - 10.500克/升)、乳酸(0.019 - 0.400克/升)、谷氨酰胺(0.925 - 1.520克/升)、谷氨酸(0.552 - 1.610克/升)、病毒滴度(未检测到病毒 - 7.505 log PFU/毫升)和铵(0.0074 - 0.0478克/升)的定量值范围内,最佳模型的平均绝对误差分别为41,533 ± 45,273个细胞/毫升(PLS)、1.63 ± 1.54%(ANN)、0.058 ± 0.065克/升(PLS)、0.007 ± 0.007克/升(ANN)、0.007 ± 0.006克/升(ANN)、0.006 ± 0.006克/升(ANN)、0.211 ± 0.221 log PFU/毫升(ANN)以及0.0026 ± 0.0026克/升(PLS)或0.0027 ± 0.0034克/升(ANN)。所获得的相关准确性、误差和最佳模型与使用相同昆虫细胞/杆状病毒表达系统或不同细胞宿主的在线和离线研究结果一致。此外,即使使用两种不同的培养基,利用这些模型对生物反应器运行过程中的生化指标进行跟踪,也显示出合适的曲线。