Suppr超能文献

基于拉曼光谱的化学计量学模型开发,用于在大规模CHO细胞生物反应器工艺中实时监测糖基化和糖化过程。

Raman based chemometric model development for glycation and glycosylation real time monitoring in a manufacturing scale CHO cell bioreactor process.

作者信息

A Gibbons Luke, Rafferty Carl, Robinson Kerry, Abad Marta, Maslanka Francis, Le Nikky, Mo Jingjie, Clark Kevin, Madden Fiona, Hayes Ronan, McCarthy Barry, Rode Christopher, O'Mahony Jim, Rea Rosemary, O'Mahony Hartnett Caitlin

机构信息

BioTherapeutics Development, Janssen Sciences Ireland UC, Cork, Ireland.

Department of Biological Sciences, Munster Technological University, Cork, Ireland.

出版信息

Biotechnol Prog. 2022 Mar;38(2):e3223. doi: 10.1002/btpr.3223. Epub 2021 Nov 16.

Abstract

The Quality by Design (QbD) approach to the production of therapeutic monoclonal antibodies (mAbs) emphasizes an understanding of the production process ensuring product quality is maintained throughout. Current methods for measuring critical quality attributes (CQAs) such as glycation and glycosylation are time and resource intensive, often, only tested offline once per batch process. Process analytical technology (PAT) tools such as Raman spectroscopy combined with chemometric modeling can provide real time measurements process variables and are aligned with the QbD approach. This study utilizes these tools to build partial least squares (PLS) regression models to provide real time monitoring of glycation and glycosylation profiles. In total, seven cell line specific chemometric PLS models; % mono-glycated, % non-glycated, % G0F-GlcNac, % G0, % G0F, % G1F, and % G2F were considered. PLS models were initially developed using small scale data to verify the capability of Raman to measure these CQAs effectively. Accurate PLS model predictions were observed at small scale (5 L). At manufacturing scale (2000 L) some glycosylation models showed higher error, indicating that scale may be a key consideration in glycosylation profile PLS model development. Model robustness was then considered by supplementing models with a single batch of manufacturing scale data. This data addition had a significant impact on the predictive capability of each model, with an improvement of 77.5% in the case of the G2F. The finalized models show the capability of Raman as a PAT tool to deliver real time monitoring of glycation and glycosylation profiles at manufacturing scale.

摘要

治疗性单克隆抗体(mAb)生产的质量源于设计(QbD)方法强调对生产过程的理解,以确保始终保持产品质量。当前用于测量关键质量属性(CQA)(如糖化和糖基化)的方法既耗时又耗费资源,通常在每个批次过程中仅进行一次离线测试。过程分析技术(PAT)工具(如拉曼光谱结合化学计量学建模)可以提供过程变量的实时测量,并且与QbD方法相一致。本研究利用这些工具构建偏最小二乘(PLS)回归模型,以提供糖化和糖基化谱的实时监测。总共考虑了七个细胞系特异性化学计量学PLS模型:单糖化百分比、非糖化百分比、G0F-GlcNac百分比、G0百分比、G0F百分比、G1F百分比和G2F百分比。PLS模型最初使用小规模数据开发,以验证拉曼有效地测量这些CQA的能力。在小规模(5L)时观察到准确的PLS模型预测。在生产规模(2000L)时,一些糖基化模型显示出较高的误差,表明规模可能是糖基化谱PLS模型开发中的一个关键考虑因素。然后通过用一批生产规模数据补充模型来考虑模型稳健性。这种数据添加对每个模型的预测能力有显著影响,在G2F的情况下提高了77.5%。最终模型显示了拉曼作为一种PAT工具在生产规模下对糖化和糖基化谱进行实时监测的能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验