Suppr超能文献

基于递归神经网络的脑磁共振波谱中不完全自由感应衰减的处理。

Recurrent neural network-aided processing of incomplete free induction decays in H-MRS of the brain.

机构信息

Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea.

Department of Biomedical Sciences, Seoul National University, Seoul, South Korea.

出版信息

J Magn Reson. 2024 Nov;368:107762. doi: 10.1016/j.jmr.2024.107762. Epub 2024 Sep 12.

Abstract

In the case of limited sampling windows or truncation of free induction decays (FIDs) for artifact removal in proton magnetic resonance spectroscopy (H-MRS) and spectroscopic imaging (H-MRSI), metabolite quantification needs to be performed on incomplete FIDs. Given that FIDs are naturally time-domain sequential data, we investigated the potential of recurrent neural network (RNN)-types of neural networks (NNs) in the processing of incomplete human brain FIDs with or without FID restoration prior to quantitative analysis at 3.0T. First, we employed an RNN encoder-decoder and developed it to restore incomplete FIDs (rRNN) with different amounts of sampled data. The quantification of metabolites from the rRNN-restored FIDs was achieved by using LCModel. Second, we modified the RNN encoder-decoder and developed it to convert incomplete brain FIDs into incomplete metabolite-only FIDs without restoration, followed by linear regression using a metabolite basis set for quantitative analysis (cRNN). In consideration of the practical benefit of the FID restoration with respect to pure zero-filling, development and analysis of the NNs were focused particularly on the incomplete FIDs with only the first 64 data points retained. All NNs were trained on simulated data and tested mainly on in vivo data acquired from healthy volunteers (n = 27). Strong correlations were obtained between the NN-derived and ground truth metabolite content (LCModel-derived content on fully sampled FIDs) for myo-inositol, total choline, and total creatine (normalized to total N-acetylaspartate) on the in vivo data using both rRNN (R = 0.83-0.94; p ≤ 0.05) and cRNN (R = 0.86-0.91; p ≤ 0.05). RNN-types of NNs have potential in the quantification of the major brain metabolites from the FIDs with substantially reduced sampled data points. For the metabolites with low to medium SNR, the performance of the NNs needs to be further improved, for which development of more elaborate and advanced simulation techniques would be of help, but remains challenging.

摘要

在质子磁共振波谱(H-MRS)和波谱成像(H-MRSI)中,为了去除伪影而对自由感应衰减(FID)进行有限采样窗口或截断的情况下,需要对不完整的 FID 进行代谢物定量。鉴于 FID 是自然的时域顺序数据,我们研究了在 3.0T 进行定量分析之前,使用递归神经网络(RNN)类型的神经网络(NN)处理完整和不完整人脑 FID 的潜力,包括 FID 恢复。首先,我们使用 RNN 编码器-解码器,并将其开发为使用不同数量采样数据来恢复不完整的 FID(rRNN)。使用 LCModel 从 rRNN 恢复的 FID 中定量分析代谢物。其次,我们修改了 RNN 编码器-解码器,并将其开发为将不完整的脑 FID 转换为无需恢复的不完整的代谢物-only FID,然后使用代谢物基础集进行线性回归进行定量分析(cRNN)。考虑到 FID 恢复相对于纯零填充的实际益处,NN 的开发和分析特别侧重于仅保留前 64 个数据点的不完整 FID。所有 NN 均在模拟数据上进行训练,并主要在来自健康志愿者(n=27)的体内数据上进行测试。在体内数据上,使用 rRNN(R=0.83-0.94;p≤0.05)和 cRNN(R=0.86-0.91;p≤0.05),从 NN 衍生的和真实代谢物含量(在完全采样的 FID 上使用 LCModel 衍生的含量)之间获得了强相关性,用于肌醇、总胆碱和总肌酸(归一化为总 N-乙酰天冬氨酸)。RNN 类型的 NN 具有从具有大大减少采样数据点的 FID 中定量主要脑代谢物的潜力。对于 SNR 低至中等的代谢物,NN 的性能需要进一步提高,为此需要开发更精细和先进的模拟技术,但仍然具有挑战性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验