Department of Behavioral Science, Division of Cancer Prevention and Population Sciences, University of Texas MD Anderson Cancer Center, Unit 1330, P.O. Box 301439, Houston, TX 77230-1439, USA.
Department of Behavioral Science, Division of Cancer Prevention and Population Sciences, University of Texas MD Anderson Cancer Center, Unit 1330, P.O. Box 301439, Houston, TX 77230-1439, USA.
Int J Psychophysiol. 2024 Nov;205:112441. doi: 10.1016/j.ijpsycho.2024.112441. Epub 2024 Sep 17.
The late positive potential (LPP) is an ERP component commonly used to study emotional processes and has been proposed as a neuroaffective biomarker for research and clinical uses. These applications, however, require standardized procedures for elicitation and ERP data processing. We evaluated the impact of different EEG preprocessing steps on the LPP's data quality and statistical power. Using a diverse sample of 158 adults, we implemented a multiverse analytical approach to compare preprocessing pipelines that progressively incorporated more steps: artifact detection and rejection, bad channel interpolation, and bad segment deletion. We assessed each pipeline's effectiveness by computing the standardized measurement error (SME) and conducting simulated experiments to estimate statistical power in detecting significant LPP differences between emotional and neutral images. Our findings highlighted that artifact rejection is crucial for enhancing data quality and statistical power. Voltage thresholds to reject trials contaminated by artifacts significantly affected SME and statistical power. Once artifact detection was optimized, further steps provided minor improvements in data quality and statistical power. Importantly, different preprocessing pipelines yielded similar outcomes. These results underscore the robustness of the LPP's affective modulation to preprocessing choices and the critical role of effective artifact management. By refining and standardizing preprocessing procedures, the LPP can become a reliable neuroaffective biomarker, supporting personalized clinical interventions for affective disorders.
晚正成分(LPP)是一种常用于研究情绪过程的 ERP 成分,被提议作为研究和临床应用的神经情感生物标志物。然而,这些应用需要标准化的诱发和 ERP 数据处理程序。我们评估了不同的 EEG 预处理步骤对 LPP 数据质量和统计功效的影响。使用一个多样化的 158 名成年人样本,我们采用多元分析方法来比较预处理管道,这些管道逐步纳入更多步骤:伪迹检测和拒绝、坏通道插值和坏段删除。我们通过计算标准化测量误差(SME)并进行模拟实验来估计在检测情绪和中性图像之间 LPP 差异的统计功效,从而评估每个管道的有效性。我们的研究结果强调了伪迹拒绝对于提高数据质量和统计功效至关重要。用于拒绝受伪迹污染的试验的电压阈值显著影响 SME 和统计功效。一旦优化了伪迹检测,进一步的步骤就可以提高数据质量和统计功效。重要的是,不同的预处理管道产生了相似的结果。这些结果突出了 LPP 的情感调制对预处理选择的稳健性以及有效伪迹管理的关键作用。通过改进和标准化预处理程序,LPP 可以成为一种可靠的神经情感生物标志物,支持针对情感障碍的个性化临床干预。