School of Medicine, Xiamen University, Xiamen 361102, China; National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361102, China.
Respir Med. 2024 Nov-Dec;234:107809. doi: 10.1016/j.rmed.2024.107809. Epub 2024 Sep 18.
Chronic Obstructive Pulmonary Disease (COPD) represents a global public health issue that significantly impairs patients' quality of life and overall health. As one of the primary causes of chronic respiratory diseases and global mortality, effective diagnosis and classification of COPD are crucial for clinical management. Pulmonary function tests (PFTs) are standard for diagnosing COPD, yet their accuracy is influenced by patient compliance and other factors, and they struggle to detect early disease pathologies. Furthermore, the complexity of COPD pathological changes poses additional challenges for clinical diagnosis, increasing the difficulty for physicians in practice. Recently, deep learning (DL) technologies have demonstrated significant potential in medical image analysis, particularly for the diagnosis and classification of COPD. By analyzing key radiological features such as airway alterations, emphysema, and vascular characteristics in Computed Tomography (CT) scan images, DL enhances diagnostic accuracy and efficiency, providing more precise treatment plans for COPD patients. This article reviews the latest research advancements in DL methods based on principal radiological features of COPD for its classification and discusses the advantages, challenges, and future research directions of DL in this field, aiming to provide new perspectives for the personalized management and treatment of COPD.
慢性阻塞性肺疾病(COPD)是一个全球性的公共卫生问题,严重影响患者的生活质量和整体健康。作为慢性呼吸道疾病和全球死亡率的主要原因之一,COPD 的有效诊断和分类对于临床管理至关重要。肺功能测试(PFT)是诊断 COPD 的标准方法,但它的准确性受到患者依从性和其他因素的影响,并且难以检测早期的疾病病理。此外,COPD 病理变化的复杂性给临床诊断带来了额外的挑战,增加了医生在实践中的难度。最近,深度学习(DL)技术在医学图像分析方面显示出了巨大的潜力,特别是在 COPD 的诊断和分类方面。通过分析 CT 扫描图像中的气道改变、肺气肿和血管特征等关键放射学特征,DL 提高了诊断的准确性和效率,为 COPD 患者提供了更精确的治疗计划。本文综述了基于 COPD 主要放射学特征的 DL 方法在 COPD 分类中的最新研究进展,并讨论了 DL 在该领域的优势、挑战和未来研究方向,旨在为 COPD 的个性化管理和治疗提供新的视角。