Department of Computer Science and Engineering, IIIT-Naya Raipur, Chhattisgarh, India.
Department of Mathematical Sciences, IIIT-Naya Raipur, Chhattisgarh, India.
Comput Methods Programs Biomed. 2024 Jan;243:107911. doi: 10.1016/j.cmpb.2023.107911. Epub 2023 Nov 10.
Chronic Obstructive Pulmonary Disease (COPD) is one of the world's worst diseases; its early diagnosis using existing methods like statistical machine learning techniques, medical diagnostic tools, conventional medical procedures, and other methods is challenging due to misclassification results of COPD diagnosis and takes a long time to perform accurate prediction. Due to the severe consequences of COPD, detection and accurate diagnosis of COPD at an early stage is essential. This paper aims to design and develop a multimodal framework for early diagnosis and accurate prediction of COPD patients based on prepared Computerized Tomography (CT) scan images and lung sound/cough (audio) samples using machine learning techniques, which are presented in this study.
The proposed multimodal framework extracts texture, histogram intensity, chroma, Mel-Frequency Cepstral Coefficients (MFCCs), and Gaussian scale space from the prepared CT images and lung sound/cough samples. Accurate data from All India Institute Medical Sciences (AIIMS), Raipur, India, and the open respiratory CT images and lung sound/cough (audio) sample dataset validate the proposed framework. The discriminatory features are selected from the extracted feature sets using unsupervised ML techniques, and customized ensemble learning techniques are applied to perform early classification and assess the severity levels of COPD patients.
The proposed framework provided 97.50%, 98%, and 95.30% accuracy for early diagnosis of COPD patients based on the fusion technique, CT diagnostic model, and cough sample model.
Finally, we compare the performance of the proposed framework with existing methods, current approaches, and conventional benchmark techniques for early diagnosis.
慢性阻塞性肺疾病(COPD)是世界上最严重的疾病之一;由于 COPD 诊断的分类结果不准确,并且需要很长时间才能进行准确的预测,因此使用现有的方法(如统计机器学习技术、医学诊断工具、常规医疗程序和其他方法)进行早期诊断具有挑战性。由于 COPD 的严重后果,早期发现和准确诊断 COPD 至关重要。本文旨在设计和开发一种基于准备好的计算机断层扫描(CT)图像和肺部声音/咳嗽(音频)样本的多模态框架,使用机器学习技术对 COPD 患者进行早期诊断和准确预测,这在本研究中有所体现。
所提出的多模态框架从准备好的 CT 图像和肺部声音/咳嗽样本中提取纹理、直方图强度、色度、梅尔频率倒谱系数(MFCC)和高斯尺度空间。印度拉贾斯坦邦的全印度医学科学研究所(AIIMS)和公开的呼吸 CT 图像和肺部声音/咳嗽(音频)样本数据集提供了准确的数据,以验证所提出的框架。使用无监督机器学习技术从提取的特征集中选择判别特征,并应用定制的集成学习技术对其进行早期分类和评估 COPD 患者的严重程度。
基于融合技术、CT 诊断模型和咳嗽样本模型,所提出的框架为 COPD 患者的早期诊断提供了 97.50%、98%和 95.30%的准确率。
最后,我们将所提出的框架与现有的方法、当前的方法和常规基准技术进行了比较,以进行早期诊断。