Suppr超能文献

基于 CT 的弱监督深度学习方法在慢性阻塞性肺疾病检测和分期中的应用。

Detection and staging of chronic obstructive pulmonary disease using a computed tomography-based weakly supervised deep learning approach.

机构信息

Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong, Shanghai, China.

Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.

出版信息

Eur Radiol. 2022 Aug;32(8):5319-5329. doi: 10.1007/s00330-022-08632-7. Epub 2022 Feb 24.

Abstract

OBJECTIVES

Chronic obstructive pulmonary disease (COPD) is underdiagnosed globally. The present study aimed to develop weakly supervised deep learning (DL) models that utilize computed tomography (CT) image data for the automated detection and staging of spirometry-defined COPD.

METHODS

A large, highly heterogeneous dataset was established, consisting of 1393 participants retrospectively recruited from outpatient, inpatient, and physical examination center settings of four large public hospitals in China. All participants underwent both inspiratory chest CT scans and pulmonary function tests. CT images, spirometry data, demographic information, and clinical information of each participant were collected. An attention-based multi-instance learning (MIL) model for COPD detection was trained using CT scans from 837 participants. External validation of the COPD detection was performed with 620 low-dose CT (LDCT) scans acquired from the National Lung Screening Trial (NLST) cohort. A multi-channel 3D residual network was further developed to categorize GOLD stages among confirmed COPD patients.

RESULTS

The attention-based MIL model used for COPD detection achieved an area under the receiver operating characteristic curve (AUC) of 0.934 (95% CI: 0.903, 0.961) on the internal test set and 0.866 (95% CI: 0.805, 0.928) on the LDCT subset acquired from the NLST. The multi-channel 3D residual network was able to correctly grade 76.4% of COPD patients in the test set (423/553) using the GOLD scale.

CONCLUSIONS

The proposed chest CT-DL approach can automatically identify spirometry-defined COPD and categorize patients according to the GOLD scale. As such, this approach may be an effective case-finding tool for COPD diagnosis and staging.

KEY POINTS

• Chronic obstructive pulmonary disease is underdiagnosed globally, particularly in developing countries. • The proposed chest computed tomography (CT)-based deep learning (DL) approaches could accurately identify spirometry-defined COPD and categorize patients according to the GOLD scale. • The chest CT-DL approach may be an alternative case-finding tool for COPD identification and evaluation.

摘要

目的

慢性阻塞性肺疾病(COPD)在全球范围内的诊断率较低。本研究旨在开发基于弱监督深度学习(DL)的模型,利用计算机断层扫描(CT)图像数据对肺功能定义的 COPD 进行自动检测和分期。

方法

建立了一个大型的、高度异质的数据集,该数据集由中国四家大型公立医院的门诊、住院和体检中心回顾性招募的 1393 名参与者组成。所有参与者均接受吸气性胸部 CT 扫描和肺功能检查。收集了每位参与者的 CT 图像、肺功能数据、人口统计学信息和临床信息。使用 837 名参与者的 CT 扫描训练了用于 COPD 检测的基于注意力的多实例学习(MIL)模型。使用来自全国肺癌筛查试验(NLST)队列的 620 例低剂量 CT(LDCT)扫描对 COPD 检测的外部验证。进一步开发了多通道 3D 残差网络来对确诊的 COPD 患者进行 GOLD 分期分类。

结果

用于 COPD 检测的基于注意力的 MIL 模型在内部测试集中的受试者工作特征曲线(ROC)下面积(AUC)为 0.934(95%置信区间:0.903,0.961),在来自 NLST 的 LDCT 子集中为 0.866(95%置信区间:0.805,0.928)。多通道 3D 残差网络能够使用 GOLD 量表正确分级 76.4%的测试集(423/553)中的 COPD 患者。

结论

提出的基于胸部 CT 的深度学习(DL)方法可以自动识别肺功能定义的 COPD,并根据 GOLD 量表对患者进行分类。因此,该方法可能是 COPD 诊断和分期的有效病例发现工具。

重点

  1. 全球范围内 COPD 的诊断率较低,特别是在发展中国家。

  2. 提出的基于胸部 CT 的深度学习方法可以准确识别肺功能定义的 COPD,并根据 GOLD 量表对患者进行分类。

  3. 基于胸部 CT 的 DL 方法可能是 COPD 识别和评估的替代病例发现工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验