Rogowski Viktor, Olsson Lars E, Scherman Jonas, Persson Emilia, Kadhim Mustafa, Af Wetterstedt Sacha, Gunnlaugsson Adalsteinn, Nilsson Martin P, Vass Nandor, Moreau Mathieu, Gebre Medhin Maria, Bäck Sven, Munck Af Rosenschöld Per, Engelholm Silke, Jamtheim Gustafsson Christian
Radiation Physics, Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund, Sweden.
Department of Medical Radiation Physics, Clinical Sciences, Lund University, Lund, Sweden.
Sci Data. 2025 Apr 11;12(1):611. doi: 10.1038/s41597-025-04954-5.
Radiotherapy treatment for prostate cancer relies on computed tomography (CT) and/or magnetic resonance imaging (MRI) for segmentation of target volumes and organs at risk (OARs). Manual segmentation of these volumes is regarded as the gold standard for ground truth in machine learning applications, but to acquire such data is tedious and time-consuming. A publicly available clinical dataset is presented, comprising MRI- and synthetic CT (sCT) images, target and OARs segmentations, and radiotherapy dose distributions for 432 prostate cancer patients treated with MRI-guided radiotherapy. An extended dataset with 35 patients is also included, with the addition of deep learning (DL)-generated segmentations, DL segmentation uncertainty maps, and DL segmentations manually adjusted by four radiation oncologists. The publication of these resources aims to aid research in automated radiotherapy treatment planning, segmentation, inter-observer analyses, and DL model uncertainty investigation. The dataset is hosted on the AIDA Data Hub and offers a free-to-use resource for the scientific community, valuable for the advancement of medical imaging and prostate cancer radiotherapy research.
前列腺癌的放射治疗依赖于计算机断层扫描(CT)和/或磁共振成像(MRI)来分割靶区体积和危及器官(OARs)。在机器学习应用中,这些体积的手动分割被视为地面真值的金标准,但获取此类数据既繁琐又耗时。本文展示了一个公开可用的临床数据集,其中包括MRI和合成CT(sCT)图像、靶区和OARs分割,以及432例接受MRI引导放射治疗的前列腺癌患者的放射治疗剂量分布。还纳入了一个包含35例患者的扩展数据集,增加了深度学习(DL)生成的分割、DL分割不确定性图,以及由四位放射肿瘤学家手动调整的DL分割。这些资源的发布旨在帮助开展自动放射治疗计划、分割、观察者间分析以及DL模型不确定性调查等方面的研究。该数据集托管在AIDA数据中心,并为科学界提供了一个免费使用的资源,对医学成像和前列腺癌放射治疗研究的进展具有重要价值。