Grossi Cristiano, Munoz Fernando, Bonavero Ilaria, Ngassam Eulalie Joelle Tondji, Garibaldi Elisabetta, Airaldi Claudia, Celia Elena, Nassisi Daniela, Brignoli Andrea, Trino Elisabetta, Bianco Lavinia, Leardi Silvia, Bongiovanni Diego, Valero Chiara, Redda Maria Grazia Ruo
Department of Oncology, University of Turin School of Medicine, 10126 Turin, Italy.
Department of Radiation Oncology, Umberto Parini Hospital, 11100 Aosta, Italy.
Curr Oncol. 2025 May 30;32(6):321. doi: 10.3390/curroncol32060321.
Radiotherapy (RT) is a mainstay treatment for prostate cancer (PC). Accurate delineation of organs at risk (OARs) is crucial for optimizing the therapeutic window by minimizing side effects. Manual segmentation is time-consuming and prone to inter-operator variability. This study investigates the performance of Limbus Contour (LC), a deep learning-based auto-contouring software, in delineating pelvic structures in PC patients.
We evaluated LC's performance on key structures (bowel bag, bladder, rectum, sigmoid colon, and pelvic lymph nodes) in 52 patients. We compared auto-contoured structures with those manually delineated by radiation oncologists using different metrics.
LC achieved good agreement for the bladder (median Dice: 0.95) and rectum (median Dice: 0.83). However, limitations were observed for the bowel bag (median Dice: 0.64) and sigmoid colon (median Dice: 0.6), with inclusion of irrelevant structures. While the median Dice for pelvic lymph nodes was acceptable (0.73), the software lacked sub-regional differentiation, limiting its applicability in certain other oncologic settings.
LC shows promise for automating OAR delineation in prostate radiotherapy, particularly for the bladder and rectum. Improvements are needed for bowel bag, sigmoid colon, and lymph node sub-regionalization. Further validation with a broader and larger patient cohort is recommended to assess generalizability.
放射治疗(RT)是前列腺癌(PC)的主要治疗方法。准确勾画危及器官(OARs)对于通过最小化副作用来优化治疗窗口至关重要。手动分割耗时且容易出现操作者间的差异。本研究调查了基于深度学习的自动轮廓软件Limbus Contour(LC)在勾画PC患者盆腔结构方面的性能。
我们评估了LC在52例患者关键结构(肠袋、膀胱、直肠、乙状结肠和盆腔淋巴结)上的性能。我们使用不同指标将自动勾画的结构与放射肿瘤学家手动勾画的结构进行比较。
LC在膀胱(中位Dice系数:0.95)和直肠(中位Dice系数:0.83)方面取得了良好的一致性。然而,在肠袋(中位Dice系数:0.64)和乙状结肠(中位Dice系数:0.6)方面观察到局限性,存在包含无关结构的情况。虽然盆腔淋巴结的中位Dice系数可以接受(0.73),但该软件缺乏亚区域区分能力,限制了其在某些其他肿瘤学环境中的适用性。
LC在前列腺放疗中自动勾画OARs方面显示出前景,特别是对于膀胱和直肠。肠袋、乙状结肠和淋巴结亚区域划分方面需要改进。建议使用更广泛、更大的患者队列进行进一步验证,以评估其通用性。