Suppr超能文献

深度学习图像重建对图像质量和冠状动脉周围脂肪衰减指数的影响。

Effect of Deep Learning Image Reconstruction on Image Quality and Pericoronary Fat Attenuation Index.

作者信息

Mei Junqing, Chen Chang, Liu Ruoting, Ma Hongbing

机构信息

Department of Radiology, BenQ Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China.

出版信息

J Imaging Inform Med. 2025 Jun;38(3):1881-1890. doi: 10.1007/s10278-024-01234-3. Epub 2024 Sep 19.

Abstract

To compare the image quality and fat attenuation index (FAI) of coronary artery CT angiography (CCTA) under different tube voltages between deep learning image reconstruction (DLIR) and adaptive statistical iterative reconstruction V (ASIR-V). Three hundred one patients who underwent CCTA with automatic tube current modulation were prospectively enrolled and divided into two groups: 120 kV group and low tube voltage group. Images were reconstructed using ASIR-V level 50% (ASIR-V50%) and high-strength DLIR (DLIR-H). In the low tube voltage group, the voltage was selected according to Chinese BMI classification: 70 kV (BMI < 24 kg/m), 80 kV (24 kg/m ≤ BMI < 28 kg/m), 100 kV (BMI ≥ 28 kg/m). At the same tube voltage, the subjective and objective image quality, edge rise distance (ERD), and FAI between different algorithms were compared. Under different tube voltages, we used DLIR-H to compare the differences between subjective, objective image quality, and ERD. Compared with the 120 kV group, the DLIR-H image noise of 70 kV, 80 kV, and 100 kV groups increased by 36%, 25%, and 12%, respectively (all P < 0.001); contrast-to-noise ratio (CNR), subjective score, and ERD were similar (all P > 0.05). In the 70 kV, 80 kV, 100 kV, and 120 kV groups, compared with ASIR-V50%, DLIR-H image noise decreased by 50%, 53%, 47%, and 38-50%, respectively; CNR, subjective score, and FAI value increased significantly (all P < 0.001), ERD decreased. Compared with 120 kV tube voltage, the combination of DLIR-H and low tube voltage maintains image quality. At the same tube voltage, compared with ASIR-V, DLIR-H improves image quality and FAI value.

摘要

比较深度学习图像重建(DLIR)与自适应统计迭代重建V(ASIR-V)在不同管电压下冠状动脉CT血管造影(CCTA)的图像质量和脂肪衰减指数(FAI)。前瞻性纳入301例行CCTA并采用自动管电流调制的患者,分为两组:120 kV组和低管电压组。图像采用50%水平的ASIR-V(ASIR-V50%)和高强度DLIR(DLIR-H)进行重建。在低管电压组中,根据中国BMI分类选择电压:70 kV(BMI<24 kg/m²)、80 kV(24 kg/m²≤BMI<28 kg/m²)、100 kV(BMI≥28 kg/m²)。在相同管电压下,比较不同算法之间的主观和客观图像质量、边缘上升距离(ERD)和FAI。在不同管电压下,使用DLIR-H比较主观、客观图像质量和ERD之间的差异。与120 kV组相比,70 kV、80 kV和100 kV组的DLIR-H图像噪声分别增加了36%、25%和12%(均P<0.001);对比噪声比(CNR)、主观评分和ERD相似(均P>0.05)。在70 kV、80 kV、100 kV和120 kV组中,与ASIR-V50%相比,DLIR-H图像噪声分别降低了50%、53%、47%和38%-50%;CNR、主观评分和FAI值显著增加(均P<0.001),ERD降低。与120 kV管电压相比,DLIR-H与低管电压相结合可维持图像质量。在相同管电压下,与ASIR-V相比,DLIR-H可提高图像质量和FAI值。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验