Suppr超能文献

基于 Caputo 导数的人工神经网络预测乙型肝炎病毒动力学模型。

Predictive modeling of hepatitis B viral dynamics: a caputo derivative-based approach using artificial neural networks.

机构信息

School of Software, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an, 710072, China.

Department of Mathematics and Statistics, The University of Lahore, Sargodha, 40100, Pakistan.

出版信息

Sci Rep. 2024 Sep 19;14(1):21853. doi: 10.1038/s41598-024-70788-7.

Abstract

A fractional model for the kinetics of hepatitis B transmission was developed. The hepatitis B virus significantly affects the world's economic and health systems. Acute and chronic carrier phases play a crucial part in the spread of the HBV infection. The Hepatitis B infection can be spread by chronic carriers even though they show no symptoms. In this article, we looked into the Hepatitis B virus's various stages of infection-related transmission and built a nonlinear epidemic. Then, a fractional hepatitis B virus model using a Caputo derivative and vaccine effects is created. First, we determined the proposed model's essential reproductive value and equilibria. With the aid of Fixed Point Theory, a qualitative analysis of the problem's approximative root has been produced. The Adams-Bashforth predictor-corrector scheme is used to aid in the iterative approximate technique's evaluation of the fractional system under consideration that has the Caputo derivative. In the final section, a graphical representation compares various noninteger orders and displays the discovered scheme findings. In this study, we've utilized Artificial Neural Network (ANN) techniques to partition the dataset into three categories: training, testing, and validation. Our analysis delves deep into each category, comprehensively examining the dataset's characteristics and behaviors within these divisions. The study comprehensively analyzes the fractional HBV transmission model, incorporating both mathematical and computational approaches. The findings contribute to a better understanding of the dynamics of HBV infection and can inform the development of effective public health interventions.

摘要

建立了乙型肝炎传播的分数阶模型。乙型肝炎病毒对世界的经济和卫生系统有重大影响。急性和慢性携带者阶段在 HBV 感染的传播中起着至关重要的作用。即使慢性携带者没有症状,他们也可能传播乙型肝炎感染。在本文中,我们研究了乙型肝炎病毒感染的各个阶段的传播,并建立了一个非线性的传染病模型。然后,我们使用 Caputo 导数和疫苗效果创建了一个分数阶乙型肝炎病毒模型。首先,我们确定了所提出模型的基本繁殖值和平衡点。借助不动点理论,对问题的近似根进行了定性分析。使用 Adams-Bashforth 预测校正方案来帮助评估具有 Caputo 导数的所考虑分数阶系统的迭代近似技术。在最后一节中,通过图形表示比较了不同的非整数阶,并显示了发现的方案结果。在这项研究中,我们利用人工神经网络(ANN)技术将数据集分为三类:训练、测试和验证。我们的分析深入到每个类别,全面检查数据集在这些分区中的特征和行为。这项研究全面分析了分数阶 HBV 传播模型,结合了数学和计算方法。研究结果有助于更好地了解 HBV 感染的动力学,并为制定有效的公共卫生干预措施提供信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验