Suppr超能文献

多模态超声对乳腺癌的诊断价值及前哨淋巴结转移的预测

Diagnostic value of multimodal ultrasound for breast cancer and prediction of sentinel lymph node metastases.

作者信息

Li Hui, Chen Lixia, Liu Meikuai, Bao Meng, Zhang Quanbo, Xu Shihao

机构信息

Department of Ultrasound Imaging, The First Affiliated Hospital of Wenzhou Medical University, New District of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, China.

Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, New District of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, China.

出版信息

Front Cell Dev Biol. 2024 Sep 5;12:1431883. doi: 10.3389/fcell.2024.1431883. eCollection 2024.

Abstract

BACKGROUND

Sentinel lymph node metastasis (SLNM) is a critical factor in the prognosis and treatment planning for breast cancer (BC), as it indicates the potential spread of cancer to other parts of the body. The accurate prediction and diagnosis of SLNM are essential for improving clinical outcomes and guiding treatment decisions.

OBJECTIVE

This study aimed to construct a Lasso regression model by integrating multimodal ultrasound (US) techniques, including US, shear wave elastography (SWE), and contrast-enhanced ultrasound (CEUS), to improve the predictive accuracy of sentinel lymph node metastasis in breast cancer and provide more precise guidance for clinical treatment.

RESULTS

A total of 253 eligible samples were screened, of which 148 were group benign and 105 were group malignant. There were statistically significant differences ( < 0.05) between group malignant patients in terms of age, palpable mass, body mass index, distance to nipple, maximum diameter, blood flow, microcalcification, 2D border, 2D morphology, and 2D uniformity and group benign. The Lasso regression model was useful in the diagnosis of benign and malignant nodules with an AUC of 0.966 and in diagnosing SLNM with an AUC of 0.832.

CONCLUSION

In this study, we successfully constructed and validated a Lasso regression model based on the multimodal ultrasound technique for predicting whether SLNM occurs in BCs, showing high diagnostic accuracy.

摘要

背景

前哨淋巴结转移(SLNM)是乳腺癌(BC)预后和治疗规划的关键因素,因为它表明癌症可能扩散至身体其他部位。准确预测和诊断前哨淋巴结转移对于改善临床结果和指导治疗决策至关重要。

目的

本研究旨在通过整合多模态超声(US)技术,包括超声、剪切波弹性成像(SWE)和超声造影(CEUS),构建Lasso回归模型,以提高乳腺癌前哨淋巴结转移的预测准确性,并为临床治疗提供更精确的指导。

结果

共筛选出253例合格样本,其中148例为良性组,105例为恶性组。恶性组患者在年龄、可触及肿块、体重指数、距乳头距离、最大直径、血流、微钙化、二维边界、二维形态和二维均匀性方面与良性组相比,差异有统计学意义(<0.05)。Lasso回归模型在诊断良性和恶性结节方面具有良好的效果,曲线下面积(AUC)为0.966,在诊断前哨淋巴结转移方面的AUC为0.832。

结论

在本研究中,我们成功构建并验证了基于多模态超声技术的Lasso回归模型,用于预测乳腺癌是否发生前哨淋巴结转移,显示出较高的诊断准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7243/11411459/64e73ef265bb/fcell-12-1431883-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验