SLEEPWELL Research Program I Faculty of Medicine, University of Helsinki, Finland.
Molecular and Integrative Biosciences Research Programme I Faculty of Biological and Environmental Sciences, University of Helsinki, Finland.
Glia. 2024 Dec;72(12):2344-2356. doi: 10.1002/glia.24617. Epub 2024 Sep 20.
Microglia, the resident immune cells in the brain, dynamically adapt their morphology based on their functional state. This study explored the relationship between microglial morphology and sleep-wake cycles in mice. Using Iba1 immunostaining to identify microglia, we quantified morphological changes in microglia at different timepoints in multiple brain regions (cortex, hippocampus, basal forebrain, hindbrain, and cerebellum) in B6 male mice using semi-automated 3D structural analysis. Simultaneously, in a separate group, we monitored wake and sleep stage-specific brain activity using EEG/EMG recordings. During natural sleep-wake cycles, we observed increased microglial complexity (enlarged volume, territorial coverage, and ramification) during wakefulness, characterized by high-frequency theta (8-12 Hz) and gamma activity (30-80 Hz). Conversely, during NREM sleep, which is dominated by delta activity (0.5-4 Hz), microglia displayed reduced complexity. Notably, this pattern was absent in brain regions lacking direct functional connections to areas generating vigilance stage-dependent thalamocortical oscillations. We then extended wakefulness to decouple circadian influence from sleep-wake-specific neuronal activity. This procedure attenuated the decrease in microglial complexity observed during natural sleep, suggesting a crucial role for neuronal activity. Subsequent recovery sleep restored microglial features, independent of the time of day (zeitgeber time). These findings reveal a dynamic interplay between vigilance stage-specific thalamocortical activity and microglial morphology across various brain regions. This suggests a potential role for microglia in sleep regulation and warrants further investigation to understand the underlying mechanisms.
小胶质细胞是大脑中的常驻免疫细胞,它们会根据功能状态动态地调整形态。本研究探讨了小胶质细胞形态与小鼠睡眠-觉醒周期之间的关系。使用 Iba1 免疫染色来鉴定小胶质细胞,我们使用半自动化 3D 结构分析,在 B6 雄性小鼠的多个脑区(皮层、海马体、基底前脑、后脑和小脑)的不同时间点,对小胶质细胞的形态变化进行了定量。同时,在另一个小组中,我们使用 EEG/EMG 记录监测了睡眠-觉醒阶段特异性的大脑活动。在自然睡眠-觉醒周期中,我们观察到在觉醒期间小胶质细胞的复杂性增加(体积增大、领地覆盖范围增大和分支增多),表现为高频θ(8-12 Hz)和γ活动(30-80 Hz)。相反,在以 delta 活动(0.5-4 Hz)为主的 NREM 睡眠期间,小胶质细胞的复杂性降低。值得注意的是,这种模式在与产生警觉阶段依赖的丘脑皮质振荡无直接功能连接的脑区中不存在。然后,我们延长了觉醒时间,以将昼夜节律的影响与睡眠-觉醒特异性神经元活动分离。这个过程削弱了在自然睡眠期间观察到的小胶质细胞复杂性的下降,表明神经元活动起着关键作用。随后的恢复性睡眠恢复了小胶质细胞的特征,与一天中的时间( zeitgeber time )无关。这些发现揭示了警觉阶段特异性丘脑皮质活动与不同脑区中小胶质细胞形态之间的动态相互作用。这表明小胶质细胞在睡眠调节中可能发挥作用,值得进一步研究以了解潜在的机制。