Suppr超能文献

酒精使用障碍患者情景性前瞻性思维后的脑连接变化

Connectivity Changes Following Episodic Future Thinking in Alcohol Use Disorder.

作者信息

Myslowski Jeremy, McClure Samuel M, Lisinski Jonathan, Tomlinson Devin C, Kablinger Anita S, MacKillop James, Koffarnus Mikhail N, Fontes Rafaela M, Bickel Warren K, LaConte Stephen M

机构信息

Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, USA.

Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia, USA.

出版信息

Brain Connect. 2024 Dec;14(10):550-559. doi: 10.1089/brain.2024.0025. Epub 2024 Nov 4.

Abstract

Recent addiction and obesity-related research suggests that episodic future thinking (EFT) can serve as a promising intervention to promote healthy decision-making. We used data from a pilot study to investigate the acute neural effects of EFT in alcohol use disorder (AUD). Because of the limitations of those data, we additionally used data from a previously published functional MRI (fMRI) study in which participants had not received any intervention for their AUD. In an out-of-scanner, guided interview, participants ( = 24; median age = 37.3 years; median AUDIT = 22.5) generated scenarios and cues about their future (EFT intervention, = 15) or recent past (control episodic thinking [CET] control intervention, = 9). Then, they performed both resting-state and task-based (delay discounting [DD]) fMRI. We used nodes from the default mode network and salience networks as well as the hippocampus to perform seed-based analyses of the resting-state data. The results then guided psychophysiological interaction analyses in the DD task. In addition, we used data from a larger, previously reported study as a "no intervention" group of AUD participants ( = 50; median age = 43.3; median Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) alcohol dependence score = 7) to reproduce and aid in interpreting our key findings. EFT, but not CET, participants showed statistically improved DD rates-a behavioral marker for addiction. Resting-state analyses of the left hippocampus revealed connectivity differences in the frontal poles. The directionality of this difference suggested that EFT may reduce a hypo-connectivity relationship between these regions in AUD. We also found resting-state connectivity differences between the salience network and the right dorsolateral prefrontal cortex (R DLPFC), which then led us to discover R-to-L DLPFC psychophysiological interaction differences during DD. Moreover, the resting-state salience-to-DLPFC functional connectivity showed an inverse relationship to DD rate while hyperconnectivity between left and right DLPFC reflected slower reaction times during DD trials. These findings suggest that previously noted benefits of EFT such as the improved DD replicated here might coincide with changes in neural connectivity patterns in AUD. The alterations in connectivity highlight potential mechanisms underlying the effectiveness of EFT in improving decision-making in AUD. Understanding these neural effects may contribute to the further development of targeted interventions for AUD and related disorders.

摘要

近期与成瘾和肥胖相关的研究表明,情景性未来思维(EFT)可作为一种有前景的干预手段,以促进健康的决策制定。我们使用了一项试点研究的数据,来探究EFT对酒精使用障碍(AUD)的急性神经效应。由于这些数据存在局限性,我们还使用了此前发表的一项功能磁共振成像(fMRI)研究的数据,在该研究中,参与者未接受针对其AUD的任何干预。在一次扫描室外的引导式访谈中,参与者(n = 24;年龄中位数 = 37.3岁;酒精使用障碍识别测试(AUDIT)中位数 = 22.5)生成了关于他们未来(EFT干预组,n = 15)或近期过去(对照情景性思维[CET]对照组干预,n = 9)的情景和线索。然后,他们进行了静息态和基于任务(延迟折扣[DD])的fMRI检查。我们使用默认模式网络、突显网络以及海马体中的节点,对静息态数据进行基于种子点的分析。这些结果随后指导了DD任务中的心理生理交互分析。此外,我们使用了一项规模更大、先前报道的研究中的数据,作为AUD参与者的“无干预”组(n = 50;年龄中位数 = 43.3岁;《精神疾病诊断与统计手册》第四版(DSM-IV)酒精依赖评分中位数 = 7),以重现并辅助解释我们的关键发现。EFT组参与者(而非CET组)的DD率在统计学上有所改善——这是成瘾的一个行为指标。对左侧海马体的静息态分析显示,额极存在连接性差异。这种差异的方向性表明,EFT可能会减少AUD中这些区域之间的低连接性关系。我们还发现突显网络与右侧背外侧前额叶皮层(R DLPFC)之间存在静息态连接性差异,这进而使我们发现在DD过程中R到L DLPFC的心理生理交互差异。此外,静息态突显网络到DLPFC的功能连接与DD率呈负相关,而左右DLPFC之间的高连接性反映了DD试验期间较慢的反应时间。这些发现表明,此前提到的EFT的益处(如在此重现的DD改善)可能与AUD中神经连接模式的变化相吻合。连接性的改变突出了EFT在改善AUD决策制定方面有效性的潜在机制。理解这些神经效应可能有助于进一步开发针对AUD及相关疾病的靶向干预措施。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验