Suppr超能文献

揭示氧化镁上化学气相沉积石墨烯中的碳簇涂层:结合机器学习力场和密度泛函理论建模

Unveiling Carbon Cluster Coating in Graphene CVD on MgO: Combining Machine Learning Force field and DFT Modeling.

作者信息

Zhao Qi, Nishihara Hirotomo, Crespo-Otero Rachel, Di Tommaso Devis

机构信息

Department of Chemistry, Queen Mary University of London, London E1 4NS, U.K.

Institute of Multidisciplinary Research for Advance Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.

出版信息

ACS Appl Mater Interfaces. 2024 Oct 2;16(39):53231-53241. doi: 10.1021/acsami.4c11398. Epub 2024 Sep 20.

Abstract

In this study, we investigate the behavior of carbon clusters (C, where ranges from 16 to 26) supported on the surface of MgO. We consider the impact of doping with common impurities (such as Si, Mn, Ca, Fe, and Al) that are typically found in ores. Our approach combines density functional theory calculations with machine learning force field molecular dynamics simulations. It is found that the C cluster, featuring a core-shell structure composed of three pentagons isolated by three hexagons, demonstrates exceptional stability on the MgO surface and behaves as an "enhanced binding agent" on MgO-doped surfaces. The molecular dynamics trajectories reveal that the stable C coating on the MgO surface exhibits less mobility compared to other sizes C clusters and the flexible graphene layer on MgO. Furthermore, this stability persists even at temperatures up to 1100K. The analysis of the electron localization function and potential function of C on MgO reveals the high localization electron density between the central carbon of the C ring and the MgO surface. This work proposes that the C island serves as a superstable and less mobile precursor coating on MgO surfaces. This explanation sheds light on the experimental defects observed in graphene products, which can be attributed to the reduced mobility of carbon islands on a substrate that remains frozen and unchanged.

摘要

在本研究中,我们研究了负载在MgO表面的碳簇(C,其中范围从16到26)的行为。我们考虑了用矿石中常见的杂质(如Si、Mn、Ca、Fe和Al)进行掺杂的影响。我们的方法将密度泛函理论计算与机器学习力场分子动力学模拟相结合。结果发现,具有由三个六边形隔开的三个五边形组成的核壳结构的C簇在MgO表面表现出非凡的稳定性,并且在掺杂MgO的表面上表现为“增强粘合剂”。分子动力学轨迹表明,MgO表面上稳定的C涂层与其他尺寸的C簇以及MgO上的柔性石墨烯层相比,迁移率较低。此外,即使在高达1100K的温度下,这种稳定性仍然存在。对MgO上C的电子定位函数和势能函数的分析揭示了C环中心碳与MgO表面之间的高定位电子密度。这项工作提出,C岛在MgO表面上作为一种超稳定且迁移率较低的前驱体涂层。这种解释揭示了在石墨烯产品中观察到的实验缺陷,这可归因于碳岛在保持冻结不变的基底上迁移率降低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4209/11450684/ed3ed61d0fa9/am4c11398_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验