Li Xiaoke, Paier Wolfgang, Paier Joachim
Institut für Chemie, Humboldt-Universität zu Berlin, Berlin, Germany.
Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute HHI, Berlin, Germany.
Front Chem. 2020 Nov 30;8:601029. doi: 10.3389/fchem.2020.601029. eCollection 2020.
The goal of many computational physicists and chemists is the ability to bridge the gap between atomistic length scales of about a few multiples of an Ångström (Å), i. e., 10 m, and meso- or macroscopic length scales by virtue of simulations. The same applies to timescales. Machine learning techniques appear to bring this goal into reach. This work applies the recently published on-the-fly machine-learned force field techniques using a variant of the Gaussian approximation potentials combined with Bayesian regression and molecular dynamics as efficiently implemented in the Vienna simulation package, VASP. The generation of these force fields follows active-learning schemes. We apply these force fields to simple oxides such as MgO and more complex reducible oxides such as iron oxide, examine their generalizability, and further increase complexity by studying water adsorption on these metal oxide surfaces. We successfully examined surface properties of pristine and reconstructed MgO and FeO surfaces. However, the accurate description of water-oxide interfaces by machine-learned force fields, especially for iron oxides, remains a field offering plenty of research opportunities.
许多计算物理学家和化学家的目标是,通过模拟弥合约为几埃(Å)(即10米)的原子长度尺度与介观或宏观长度尺度之间的差距。时间尺度方面也是如此。机器学习技术似乎使这一目标得以实现。这项工作应用了最近发表的即时机器学习力场技术,该技术使用高斯近似势的一个变体,并结合贝叶斯回归和分子动力学,这在维也纳模拟包VASP中得到了有效实现。这些力场的生成遵循主动学习方案。我们将这些力场应用于简单氧化物(如MgO)和更复杂的可还原氧化物(如氧化铁),检验其通用性,并通过研究这些金属氧化物表面的水吸附来进一步增加复杂度。我们成功地研究了原始和重构的MgO及FeO表面的性质。然而,通过机器学习力场准确描述水 - 氧化物界面,特别是对于氧化铁而言,仍然是一个有大量研究机会的领域。