Suppr超能文献

一种低酸度氯化物电解质可使水系锡金属电池具有出色的可逆性和稳定性。

A Low-Acidity Chloride Electrolyte Enables Exceptional Reversibility and Stability in Aqueous Tin Metal Batteries.

作者信息

Chang Songyang, Hou Wentao, Del Valle-Perez Angelica, Ullah Irfan, Qiu Shen, Rodriguez Jeileen Luciano, Díaz-Vázquez Liz M, Cunci Lisandro, Morell Gerardo, Wu Xianyong

机构信息

Department of Chemistry, University of Puerto Rico-Rio Piedras Campus, San Juan, PR 00925, USA.

Department of Physics, University of Puerto Rico-Rio Piedras Campus, San Juan, PR 00925, USA.

出版信息

Angew Chem Int Ed Engl. 2025 Jan 10;64(2):e202414346. doi: 10.1002/anie.202414346. Epub 2024 Nov 2.

Abstract

Tin (Sn) metal has emerged as a promising anode for aqueous batteries, due to its high capacity, non-toxicity, and cost-effectiveness. However, Sn metal has often been coupled with strong and corrosive sulfuric acids (2-3 M), leading to severe electrode corrosion and hydrogen evolution issues. Although high efficiency and long cycling were reported, the results were achieved using high currents to kinetically mask electrode-electrolyte side reactions. Herein, we introduce a low-acidity tin chloride electrolyte (pH=1.09) as a more viable option, which eliminates the need of strong acids and enables a reversible dendrite-free Sn plating chemistry. Remarkably, the plating efficiency approaches unity (99.97 %) under standard testing conditions (1 mA cm for 1 mAh cm), which maintains high at 99.23-99.93 % across various aggressive conditions, including low current (0.1-0.25 mA cm), high capacity (5-10 mAh cm), and extended resting time (24-72 hours). The battery calendar life is further prolonged to 3064 hours, significantly surpassing literature reports. Additionally, we presented an effective method to mitigate the potential Sn oxidization issue on the cathode, demonstrating long-cycling Sn||LiMnO hybrid batteries. This work offers critical insights for developing highly reversible Sn metal batteries.

摘要

金属锡(Sn)因其高容量、无毒和成本效益,已成为水性电池中一种很有前景的负极材料。然而,金属锡常常与强腐蚀性硫酸(2-3M)结合使用,导致严重的电极腐蚀和析氢问题。尽管有报道称实现了高效率和长循环,但这些结果是通过高电流在动力学上掩盖电极-电解质副反应而取得的。在此,我们引入一种低酸度的氯化锡电解质(pH=1.09)作为更可行的选择,它无需使用强酸,并能实现可逆的无枝晶镀锡化学过程。值得注意的是,在标准测试条件下(1mA cm²对应1mAh cm²),镀锡效率接近100%(99.97%),在各种苛刻条件下,包括低电流(0.1-0.25mA cm²)、高容量(5-10mAh cm²)和延长静置时间(24-72小时),该效率仍保持在99.23%-99.93%的高水平。电池的日历寿命进一步延长至3064小时,显著超过文献报道。此外,我们还提出了一种有效方法来减轻阴极上潜在的锡氧化问题,展示了长循环的Sn||LiMnO混合电池。这项工作为开发高度可逆的锡金属电池提供了关键见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验