Department of Materials Science and Engineering, City University of Hong Kong 83 Tat Chee Avenue, 999077, Kowloon, Hong Kong, People's Republic of China.
Department of Applied Physics and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, 999077, Kowloon, Hong Kong, People's Republic of China.
Nat Commun. 2023 May 22;14(1):2925. doi: 10.1038/s41467-023-38492-8.
One of the major obstacles hindering the application of zinc metal batteries is the contradictory demands from the Zn metal anode and cathodes. At the anode side, water induces serious corrosion and dendrite growth, remarkably suppressing the reversibility of Zn plating/stripping. At the cathode side, water is essential because many cathode materials require both H and Zn insertion/extraction to achieve a high capacity and long lifespan. Herein, an asymmetric design of inorganic solid-state electrolyte combined with hydrogel electrolyte is presented to simultaneously meet the as-mentioned contrary requirements. The inorganic solid-state electrolyte is toward the Zn anode to realize a dendrite-free and corrosion-free highly reversible Zn plating/stripping, and the hydrogel electrolyte enables consequent H and Zn insertion/extraction at the cathode side for high performance. Therefore, there is no hydrogen and dendrite growth detected in cells with a super high-areal-capacity up to 10 mAh·cm (Zn//Zn), ~5.5 mAh·cm (Zn//MnO) and ~7.2 mAh·cm (Zn//VO). These Zn//MnO and Zn//VO batteries show remarkable cycling stability over 1000 cycles with 92.4% and over 400 cycles with 90.5% initial capacity retained, respectively.
阻碍锌金属电池应用的一个主要障碍是锌金属阳极和阴极的相互矛盾的需求。在阳极侧,水会引起严重的腐蚀和枝晶生长,显著抑制 Zn 电镀/剥离的可逆性。在阴极侧,水是必不可少的,因为许多阴极材料都需要 H 和 Zn 的插入/提取才能实现高容量和长寿命。在此,提出了一种无机固态电解质与水凝胶电解质的不对称设计,以同时满足上述相反的要求。无机固态电解质面向 Zn 阳极,以实现无枝晶和无腐蚀的高度可逆 Zn 电镀/剥离,而水凝胶电解质则能够在阴极侧实现连续的 H 和 Zn 插入/提取,从而实现高性能。因此,在超高面积容量高达 10 mAh·cm(Zn//Zn)、5.5 mAh·cm(Zn//MnO)和7.2 mAh·cm(Zn//VO)的电池中,没有检测到氢和枝晶生长。这些 Zn//MnO 和 Zn//VO 电池在 1000 次循环中表现出显著的循环稳定性,容量保持率分别为 92.4%和初始容量的 90.5%以上。