Suppr超能文献

双结构破坏电解质助力实用型镉金属电池。

Dual-structure-breaking electrolyte enables practical cadmium-metal battery.

作者信息

Cui Yang-Feng, Song Hao-Bin, Yao Jing-Jing, Hao Qi, Li Xue-Liang, Li Yi-Fan, Guo Bin-Bin, Zhu Yun-Hai, Yang Hui Ying

机构信息

Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, Singapore.

School of Materials Science and Engineering, Zhejiang University, Hangzhou, China.

出版信息

Nat Commun. 2025 Jul 1;16(1):5619. doi: 10.1038/s41467-025-60740-2.

Abstract

High-energy aqueous metal batteries are promising candidates for the next-generation energy storage systems but face critical challenges of dendrite and corrosion in metal negative electrodes. To address these issues, we report an aqueous cadmium-metal battery employing a fast-kinetics structure-breaking electrolyte composed of CdCl and NHCl. The addition of NHCl induces the formation of dual structure breakers, NH and tetrachlorocomplex ([CdCl]), which facilitate fast charge transfer kinetics in aqueous cadmium-metal batteries and endow dendrite-free/corrosion-resistant capabilities to Cd negative electrodes. This tailored electrolyte realizes a convincing Coulombic efficiency (99.93%) for Cd plating/stripping behavior at a high Cd utilization of 55%, making it suitable for practical applications. Moreover, the fast-kinetics aqueous cadmium-metal batteries exhibit remarkable compatibility with diverse types of positive electrodes, including conversion-, coordination-, intercalation- and capacitance-type, offering enhanced rate performance and durable rechargeable stability. These results establish a robust and scalable aqueous battery design for sustainable energy storage systems.

摘要

高能水系金属电池是下一代储能系统的理想候选者,但面临金属负极中枝晶和腐蚀的关键挑战。为了解决这些问题,我们报道了一种水系镉金属电池,它采用了由CdCl和NHCl组成的具有快速动力学的结构破坏型电解质。NHCl的加入诱导形成了双重结构破坏剂NH和四氯络合物([CdCl]),这促进了水系镉金属电池中的快速电荷转移动力学,并赋予Cd负极无枝晶/抗腐蚀能力。这种定制的电解质在55%的高Cd利用率下实现了令人信服的Cd电镀/剥离行为的库仑效率(99.93%),使其适用于实际应用。此外,具有快速动力学的水系镉金属电池与包括转化型、配位型、插层型和电容型在内的多种类型正极表现出显著的兼容性,具有增强的倍率性能和持久的可充电稳定性。这些结果为可持续储能系统建立了一种强大且可扩展的水系电池设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1876/12216936/be245ef81f41/41467_2025_60740_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验