Suppr超能文献

基于CT成像特征的列线图模型在鉴别十二指肠胃肠道间质瘤与胰头神经内分泌肿瘤中的价值

The value of a nomogram model based on CT imaging features in differentiating duodenal gastrointestinal stromal tumors from pancreatic head neuroendocrine tumors.

作者信息

Yan Wenjie, Yu Haiyan, Xu Chuanfang, Zeng Mengshu, Wang Mingliang

机构信息

The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China.

Zhongshan Hospital, Fudan University, Shanghai, China.

出版信息

Abdom Radiol (NY). 2025 Mar;50(3):1330-1341. doi: 10.1007/s00261-024-04579-z. Epub 2024 Sep 20.

Abstract

OBJECTIVE

To construct a nomogram model based on multi-slice spiral CT imaging features to predict and differentiate between duodenal gastrointestinal stromal tumors (GISTs) and pancreatic head neuroendocrine tumors (NENs), providing imaging evidence for clinical treatment decisions.

METHODS

A retrospective collection of clinical information, pathological results, and imaging data was conducted on 115 cases of duodenal GISTs and 76 cases of pancreatic head NENs confirmed by surgical pathology at Zhongshan Hospital Fudan University from November 2013 to November 2022. Comparative analysis was performed on the tumor's maximum diameter, shortest diameter, long diameter/short diameter ratio, tumor morphology, tumor border, central position of the lesion, lesion long-axis direction, the relationship between tumor and common bile duct (CBD), duodenal side ulceration of the lesion, calcification, cystic and solid proportion within the tumor, thickened feeding arteries, tumor neovascularization, distant metastasis, and CT values during plain and enhanced scans in arterial and venous phases. Statistical analysis was conducted using t-tests, Mann-Whitney U tests, and χ tests. Univariate and multivariate logistic regression analyses were used to identify independent predictors for differentiating duodenal GISTs from pancreatic head NENs. Based on these independent predictors, a nomogram model was constructed, and the receiver operating characteristic (ROC) curve was used to evaluate the diagnostic performance of the model. The nomogram was validated using a calibration curve, and decision curve analysis was applied to assess the clinical application value of the nomogram.

RESULTS

There were significant differences in the duodenal GISTs group and the pancreatic head NENs group in terms of longest diameter (P < 0.001), shortest diameter (P < 0.001), plain CT value (P < 0.001), arterial phase CT value (P < 0.001), venous phase CT value (P = 0.002), lesion long-axis direction (P < 0.001), central position of the lesion (P < 0.001), the relationship between tumor and CBD(< 0.001), border (P = 0.004), calcification (P = 0.017), and distant metastasis (P = 0.018). Multivariate logistic regression analysis identified uncertain location (OR 0.040, 95% CI 0.003-0.549), near the duodenum (OR 0, 95% CI 0-0.009), with the lesion long-axis direction along the pancreas as a reference, along the duodenum (OR 0.106, 95% CI 0.010-1.156) or no significant difference (OR 4.946, 95% CI 0.453-54.017), and the relationship between tumor and CBD (OR 0.013, 95% CI 0.001-0.180), shortest diameter (OR 0.705, 95% CI 0.546-0.909), and calcification (OR 18.638, 95% CI 1.316-263.878) as independent risk factors for differentiating between duodenal GISTs and pancreatic head NENs (all P values < 0.05). The combined diagnostic model's AUC values based on central position of the lesion, calcification, lesion long axis orientation, the relationship between tumor and CBD, shortest diameter, and the joint diagnostic model were 0.937 (0.902-0.972), 0.700(0.624-0.776), 0.717(0.631-0.802), 0.559 (0.473-0.644), 0.680 (0.603-0.758), and 0.991(0.982-0.999), respectively, with a sensitivity of 97.3% and a specificity of 93.0% for the joint diagnostic model. The nomogram model's AUC value was 0.985(0.973-0.996), with a sensitivity and specificity of 94.7% and 93.9%, respectively. The calibration curve indicated good agreement between predicted and actual risks. Decision curve analysis verified the clinical application value of the nomogram.

CONCLUSION

The nomogram model based on CT imaging features effectively differentiates between duodenal GISTs and pancreatic head NENs, aiding in more precise clinical treatment decisions.

摘要

目的

构建基于多层螺旋CT成像特征的列线图模型,以预测和鉴别十二指肠胃肠道间质瘤(GIST)与胰头神经内分泌肿瘤(NEN),为临床治疗决策提供影像学依据。

方法

回顾性收集2013年11月至2022年11月在复旦大学附属中山医院经手术病理确诊的115例十二指肠GIST和76例胰头NEN的临床信息、病理结果及影像数据。对肿瘤的最大直径、最短直径、长径/短径比、肿瘤形态、肿瘤边界、病变中心位置、病变长轴方向、肿瘤与胆总管(CBD)的关系、病变十二指肠侧溃疡、钙化、肿瘤内囊实性比例、增粗的供血动脉、肿瘤新生血管、远处转移以及平扫和动脉期、静脉期增强扫描的CT值进行对比分析。采用t检验、Mann-Whitney U检验和χ检验进行统计分析。运用单因素和多因素logistic回归分析确定鉴别十二指肠GIST与胰头NEN的独立预测因素。基于这些独立预测因素构建列线图模型,并采用受试者操作特征(ROC)曲线评估该模型的诊断性能。通过校准曲线对列线图进行验证,并应用决策曲线分析评估列线图的临床应用价值。

结果

十二指肠GIST组和胰头NEN组在最长直径(P<0.001)、最短直径(P<0.001)、平扫CT值(P<0.001)、动脉期CT值(P<0.001)、静脉期CT值(P = 0.002)、病变长轴方向(P<0.001)、病变中心位置(P<0.001)、肿瘤与CBD的关系(<0.001)、边界(P = 0.004)、钙化(P = 0.017)及远处转移(P = 0.018)方面存在显著差异。多因素logistic回归分析确定位置不确定(OR 0.040,95%CI 0.003 - 0.549)、靠近十二指肠(OR 0,95%CI 0 - 0.009),以病变长轴沿胰腺为参照,沿十二指肠(OR 0.106,95%CI 0.010 - 1.156)或无显著差异(OR 4.946,95%CI 0.453 - 54.017),以及肿瘤与CBD的关系(OR **********)、最短直径(OR 0.705,95%CI 0.546 - 0.909)和钙化(OR 18.638,95%CI 1.316 - 263.878)为鉴别十二指肠GIST与胰头NEN的独立危险因素(所有P值<0.05)。基于病变中心位置、钙化、病变长轴方向、肿瘤与CBD的关系、最短直径的联合诊断模型AUC值分别为0.937(0.902 - 0.972)、0.700(0.624 - 0.776)、0.717(0.631 - 0.802)、0.559 (0.473 - 0.644)、0.680 (0.603 - 0.758),联合诊断模型的灵敏度为97.3%,特异度为93.0%。列线图模型的AUC值为0.985(0.973 - 0.996),灵敏度和特异度分别为94.7%和93.9%。校准曲线表明预测风险与实际风险之间具有良好的一致性。决策曲线分析验证了列线图的临床应用价值。

结论

基于CT成像特征的列线图模型能有效鉴别十二指肠GIST与胰头NEN,有助于更精准的临床治疗决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验