Suppr超能文献

无跟踪的自由手扫描超声体积重建。

Ultrasound Volume Reconstruction From Freehand Scans Without Tracking.

出版信息

IEEE Trans Biomed Eng. 2023 Mar;70(3):970-979. doi: 10.1109/TBME.2022.3206596. Epub 2023 Feb 17.

Abstract

Transrectal ultrasound is commonly used for guiding prostate cancer biopsy, where 3D ultrasound volume reconstruction is often desired. Current methods for 3D reconstruction from freehand ultrasound scans require external tracking devices to provide spatial information of an ultrasound transducer. This paper presents a novel deep learning approach for sensorless ultrasound volume reconstruction, which efficiently exploits content correspondence between ultrasound frames to reconstruct 3D volumes without external tracking. The underlying deep learning model, deep contextual-contrastive network (DC -Net), utilizes self-attention to focus on the speckle-rich areas to estimate spatial movement and then minimizes a margin ranking loss for contrastive feature learning. A case-wise correlation loss over the entire input video helps further smooth the estimated trajectory. We train and validate DC -Net on two independent datasets, one containing 619 transrectal scans and the other having 100 transperineal scans. Our proposed approach attained superior performance compared with other methods, with a drift rate of 9.64 % and a prostate Dice of 0.89. The promising results demonstrate the capability of deep neural networks for universal ultrasound volume reconstruction from freehand 2D ultrasound scans without tracking information.

摘要

经直肠超声常用于引导前列腺癌活检,通常需要进行 3D 超声体积重建。目前,从自由式超声扫描中进行 3D 重建的方法需要外部跟踪设备来提供超声换能器的空间信息。本文提出了一种新的无传感器超声体积重建的深度学习方法,该方法有效地利用了超声帧之间的内容对应关系,无需外部跟踪即可重建 3D 体积。基础的深度学习模型,深度上下文对比网络(DC-Net),利用自注意力来关注斑点丰富的区域,以估计空间运动,然后最小化边缘排序损失进行对比特征学习。整个输入视频的逐例相关损失有助于进一步平滑估计的轨迹。我们在两个独立的数据集上训练和验证了 DC-Net,一个包含 619 次经直肠扫描,另一个包含 100 次经会阴扫描。与其他方法相比,我们提出的方法表现出色,漂移率为 9.64%,前列腺 Dice 系数为 0.89。有前景的结果表明,深度神经网络具有从自由式 2D 超声扫描中进行通用超声体积重建的能力,而无需跟踪信息。

相似文献

1
Ultrasound Volume Reconstruction From Freehand Scans Without Tracking.无跟踪的自由手扫描超声体积重建。
IEEE Trans Biomed Eng. 2023 Mar;70(3):970-979. doi: 10.1109/TBME.2022.3206596. Epub 2023 Feb 17.
3
3D freehand ultrasound without external tracking using deep learning.基于深度学习的无外部追踪的 3D 自由式超声。
Med Image Anal. 2018 Aug;48:187-202. doi: 10.1016/j.media.2018.06.003. Epub 2018 Jun 15.
6
Deep Attentive Features for Prostate Segmentation in 3D Transrectal Ultrasound.三维经直肠超声前列腺分割的深度注意特征。
IEEE Trans Med Imaging. 2019 Dec;38(12):2768-2778. doi: 10.1109/TMI.2019.2913184. Epub 2019 Apr 25.
9
Stretched reconstruction based on 2D freehand ultrasound for peripheral artery imaging.基于二维自由手超声的外周动脉成像拉伸重建。
Int J Comput Assist Radiol Surg. 2022 Jul;17(7):1281-1288. doi: 10.1007/s11548-022-02636-w. Epub 2022 Apr 29.
10

引用本文的文献

1
Sensorless End-to-End Freehand 3-D Ultrasound Reconstruction With Physics-Guided Deep Learning.基于物理引导深度学习的无传感器端到端徒手三维超声重建
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Nov;71(11):1514-1525. doi: 10.1109/TUFFC.2024.3465214. Epub 2024 Nov 27.
2
Ultrasound Frame-to-Volume Registration via Deep Learning for Interventional Guidance.基于深度学习的介入引导超声帧到容积配准。
IEEE Trans Ultrason Ferroelectr Freq Control. 2023 Sep;70(9):1016-1025. doi: 10.1109/TUFFC.2022.3229903. Epub 2023 Aug 29.

本文引用的文献

2
3D freehand ultrasound without external tracking using deep learning.基于深度学习的无外部追踪的 3D 自由式超声。
Med Image Anal. 2018 Aug;48:187-202. doi: 10.1016/j.media.2018.06.003. Epub 2018 Jun 15.
4
A Review on Real-Time 3D Ultrasound Imaging Technology.实时 3D 超声成像技术综述。
Biomed Res Int. 2017;2017:6027029. doi: 10.1155/2017/6027029. Epub 2017 Mar 26.
5
Medical Instrument Detection in 3-Dimensional Ultrasound Data Volumes.三维超声数据体中的医疗器械检测。
IEEE Trans Med Imaging. 2017 Aug;36(8):1664-1675. doi: 10.1109/TMI.2017.2692302. Epub 2017 Apr 7.
9
PLUS: open-source toolkit for ultrasound-guided intervention systems.PLUS:超声引导介入系统的开源工具包。
IEEE Trans Biomed Eng. 2014 Oct;61(10):2527-37. doi: 10.1109/TBME.2014.2322864. Epub 2014 May 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验