Suppr超能文献

基于模态感知学习的多模态假新闻检测决定性因素发现

Modality Perception Learning-Based Determinative Factor Discovery for Multimodal Fake News Detection.

作者信息

Wang Boyue, Wu Guangchao, Li Xiaoyan, Gao Junbin, Hu Yongli, Yin Baocai

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Sep 20;PP. doi: 10.1109/TNNLS.2024.3446030.

Abstract

The dissemination of fake news, often fueled by exaggeration, distortion, or misleading statements, significantly jeopardizes public safety and shapes social opinion. Although existing multimodal fake news detection methods focus on multimodal consistency, they occasionally neglect modal heterogeneity, missing the opportunity to unearth the most related determinative information concealed within fake news articles. To address this limitation and extract more decisive information, this article proposes the modality perception learning-based determinative factor discovery (MoPeD) model. MoPeD optimizes the steps of feature extraction, fusion, and aggregation to adaptively discover determinants within both unimodality features and multimodality fusion features for the task of fake news detection. Specifically, to capture comprehensive information, the dual encoding module integrates a modal-consistent contrastive language-image pre-training (CLIP) pretrained encoder with a modal-specific encoder, catering to both explicit and implicit information. Motivated by the prompt strategy, the output features of the dual encoding module are complemented by learnable memory information. To handle modality heterogeneity during fusion, the multilevel cross-modality fusion module is introduced to deeply comprehend the complex implicit meaning within text and image. Finally, for aggregating unimodal and multimodal features, the modality perception learning module gauges the similarity between modalities to dynamically emphasize decisive modality features based on the cross-modal content heterogeneity scores. The experimental evaluations conducted on three public fake news datasets show that the proposed model is superior to other state-of-the-art fake news detection methods.

摘要

假新闻的传播,往往由夸张、歪曲或误导性陈述所推动,严重危及公共安全并塑造社会舆论。尽管现有的多模态假新闻检测方法侧重于多模态一致性,但它们偶尔会忽略模态异质性,从而错失挖掘隐藏在假新闻文章中最相关的决定性信息的机会。为解决这一局限性并提取更多决定性信息,本文提出了基于模态感知学习的决定性因素发现(MoPeD)模型。MoPeD优化了特征提取、融合和聚合步骤,以自适应地发现单模态特征和多模态融合特征中的决定性因素,用于假新闻检测任务。具体而言,为了捕获全面信息,双编码模块将模态一致的对比语言-图像预训练(CLIP)预训练编码器与特定模态编码器集成在一起,兼顾显式和隐式信息。受提示策略的启发,双编码模块的输出特征由可学习的记忆信息补充。为了在融合过程中处理模态异质性,引入了多级跨模态融合模块来深入理解文本和图像中复杂的隐含意义。最后,为了聚合单模态和多模态特征,模态感知学习模块根据跨模态内容异质性分数来衡量模态之间的相似性,以动态强调决定性模态特征。在三个公共假新闻数据集上进行的实验评估表明,所提出的模型优于其他现有最先进的假新闻检测方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验