Suppr超能文献

转录因子结合过程是基因表达噪声的主要驱动力。

Transcription factor binding process is the primary driver of noise in gene expression.

机构信息

Department of Biotechnology, Indian Institute of Technology (IIT) Kharagpur, Kharagpur, West Bengal, India.

Max-Planck-Institute for Evolutionary Biology, Plön, Germany.

出版信息

PLoS Genet. 2022 Dec 12;18(12):e1010535. doi: 10.1371/journal.pgen.1010535. eCollection 2022 Dec.

Abstract

Noise in expression of individual genes gives rise to variations in activity of cellular pathways and generates heterogeneity in cellular phenotypes. Phenotypic heterogeneity has important implications for antibiotic persistence, mutation penetrance, cancer growth and therapy resistance. Specific molecular features such as the presence of the TATA box sequence and the promoter nucleosome occupancy have been associated with noise. However, the relative importance of these features in noise regulation is unclear and how well these features can predict noise has not yet been assessed. Here through an integrated statistical model of gene expression noise in yeast we found that the number of regulating transcription factors (TFs) of a gene was a key predictor of noise, whereas presence of the TATA box and the promoter nucleosome occupancy had poor predictive power. With an increase in the number of regulatory TFs, there was a rise in the number of cooperatively binding TFs. In addition, an increased number of regulatory TFs meant more overlaps in TF binding sites, resulting in competition between TFs for binding to the same region of the promoter. Through modeling of TF binding to promoter and application of stochastic simulations, we demonstrated that competition and cooperation among TFs could increase noise. Thus, our work uncovers a process of noise regulation that arises out of the dynamics of gene regulation and is not dependent on any specific transcription factor or specific promoter sequence.

摘要

基因表达的噪声会导致细胞通路活性的变化,并产生细胞表型的异质性。表型异质性对抗生素耐药性、突变穿透性、癌症生长和治疗抵抗具有重要意义。特定的分子特征,如 TATA 盒序列的存在和启动子核小体占有率,与噪声有关。然而,这些特征在噪声调节中的相对重要性尚不清楚,这些特征在多大程度上可以预测噪声也尚未得到评估。在这里,通过酵母中基因表达噪声的综合统计模型,我们发现一个基因的调控转录因子(TF)的数量是噪声的一个关键预测因子,而 TATA 盒的存在和启动子核小体占有率的预测能力较差。随着调控 TF 的数量增加,协同结合的 TF 数量也会增加。此外,更多的调控 TF 意味着 TF 结合位点之间的重叠更多,导致 TF 之间为了结合启动子的同一区域而产生竞争。通过对 TF 与启动子结合的建模和随机模拟的应用,我们证明了 TF 之间的竞争和合作可以增加噪声。因此,我们的工作揭示了一种噪声调节过程,它源于基因调控的动态,而不依赖于任何特定的转录因子或特定的启动子序列。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf84/9779669/4919c291715c/pgen.1010535.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验