Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN 37232.
Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232.
Proc Natl Acad Sci U S A. 2024 Oct;121(40):e2406063121. doi: 10.1073/pnas.2406063121. Epub 2024 Sep 20.
Neurotransmitter:sodium symporters (NSSs) play critical roles in neural signaling by regulating neurotransmitter uptake into cells powered by sodium electrochemical gradients. Bacterial NSSs orthologs, including MhsT from , have emerged as model systems to understand the structural motifs of alternating access in NSSs and the extent of conservation of these motifs across the family. Here, we apply a computational/experimental methodology to illuminate the conformational landscape of MhsT alternating access. Capitalizing on our recently developed method, Sampling Protein Ensembles and Conformational Heterogeneity with AlphaFold2 (SPEACH_AF), we derived clusters of MhsT models spanning the transition from inward-facing to outward-facing conformations. Systematic application of double electron-electron resonance (DEER) spectroscopy revealed ligand-dependent movements of multiple structural motifs that underpin MhsT's conformational cycle. Remarkably, comparative DEER analysis in detergent micelles and lipid nanodiscs highlights the profound effect of the environment on the energetics of conformational changes. Through experimentally derived selection of collective variables, we present a model of ion and substrate-powered transport by MhsT consistent with the conformational cycle derived from DEER. Our findings not only advance the understanding of MhsT's function but also uncover motifs of conformational dynamics conserved within the broader context of the NSS family and within the LeuT-fold class of transporters. Importantly, our methodological blueprint introduces an approach that can be applied across a diverse spectrum of transporters to describe their conformational landscapes.
钠协同转运体(NSSs)通过调节钠离子电化学梯度驱动的细胞内神经递质摄取,在神经信号传递中发挥着关键作用。细菌 NSSs 的同源物,包括 中的 MhsT,已成为研究 NSSs 中交替访问结构基序以及这些基序在家族内保守程度的模型系统。在这里,我们应用计算/实验方法来阐明 MhsT 交替访问的构象景观。利用我们最近开发的方法,Sampling Protein Ensembles and Conformational Heterogeneity with AlphaFold2 (SPEACH_AF),我们推导出了跨越从内向构象到外向构象转变的 MhsT 模型簇。系统应用双电子电子共振(DEER)光谱揭示了多个结构基序的配体依赖性运动,这些基序构成了 MhsT 的构象循环。值得注意的是,在洗涤剂胶束和脂质纳米盘中进行的比较 DEER 分析突出了环境对构象变化能量的深远影响。通过对集体变量的实验衍生选择,我们提出了一个 MhsT 离子和底物驱动的转运模型,该模型与从 DEER 得出的构象循环一致。我们的研究结果不仅推进了对 MhsT 功能的理解,还揭示了在更广泛的 NSS 家族和 LeuT 折叠类转运蛋白中保守的构象动力学基序。重要的是,我们的方法蓝图引入了一种可以应用于广泛的转运蛋白来描述它们的构象景观的方法。