Suppr超能文献

利用癌症蛋白组装体的突变预测免疫疗法反应。

Prediction of immunotherapy response using mutations to cancer protein assemblies.

机构信息

Department of Medicine and Moores Cancer Center, School of Medicine, University of California San Diego, San Diego, CA, USA.

Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA.

出版信息

Sci Adv. 2024 Sep 20;10(38):eado9746. doi: 10.1126/sciadv.ado9746.

Abstract

While immune checkpoint inhibitors have revolutionized cancer therapy, many patients exhibit poor outcomes. Here, we show immunotherapy responses in bladder and non-small cell lung cancers are effectively predicted by factoring tumor mutation burden (TMB) into burdens on specific protein assemblies. This approach identifies 13 protein assemblies for which the assembly-level mutation burden (AMB) predicts treatment outcomes, which can be combined to powerfully separate responders from nonresponders in multiple cohorts (e.g., 76% versus 37% bladder cancer 1-year survival). These results are corroborated by (i) engineered disruptions in the predictive assemblies, which modulate immunotherapy response in mice, and (ii) histochemistry showing that predicted responders have elevated inflammation. The 13 assemblies have diverse roles in DNA damage checkpoints, oxidative stress, or Janus kinase/signal transducers and activators of transcription signaling and include unexpected genes (e.g., PIK3CG and FOXP1) for which mutation affects treatment response. This study provides a roadmap for using tumor cell biology to factor mutational effects on immune response.

摘要

虽然免疫检查点抑制剂已经彻底改变了癌症治疗方法,但许多患者的治疗效果仍不理想。在这里,我们通过将肿瘤突变负担 (TMB) 纳入特定蛋白质复合物的负担,来预测膀胱癌和非小细胞肺癌的免疫治疗反应。这种方法确定了 13 种蛋白质复合物,其复合物水平的突变负担 (AMB) 可预测治疗结果,可将多种队列中的应答者与无应答者有效区分开(例如,膀胱癌 1 年生存率为 76%对 37%)。这些结果得到了以下证据的支持:(i) 在预测性复合物中进行工程破坏,可调节小鼠的免疫治疗反应,以及 (ii) 组织化学显示,预测的应答者具有更高的炎症水平。这 13 个复合物在 DNA 损伤检查点、氧化应激或 Janus 激酶/信号转导和转录激活因子信号转导中具有不同的作用,并且包括影响治疗反应的意外基因(例如 PIK3CG 和 FOXP1)。这项研究为利用肿瘤细胞生物学来分析突变对免疫反应的影响提供了路线图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed2b/11414719/34a4d6c501e1/sciadv.ado9746-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验