Suppr超能文献

深度学习分析脂肪组织与结直肠癌预后预测

Deep Learning Analysis of the Adipose Tissue and the Prediction of Prognosis in Colorectal Cancer.

作者信息

Lin Anqi, Qi Chang, Li Mujiao, Guan Rui, Imyanitov Evgeny N, Mitiushkina Natalia V, Cheng Quan, Liu Zaoqu, Wang Xiaojun, Lyu Qingwen, Zhang Jian, Luo Peng

机构信息

Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.

College of Biomedical Engineering, Southern Medical University, Guangzhou, China.

出版信息

Front Nutr. 2022 May 11;9:869263. doi: 10.3389/fnut.2022.869263. eCollection 2022.

Abstract

Research has shown that the lipid microenvironment surrounding colorectal cancer (CRC) is closely associated with the occurrence, development, and metastasis of CRC. According to pathological images from the National Center for Tumor diseases (NCT), the University Medical Center Mannheim (UMM) database and the ImageNet data set, a model called VGG19 was pre-trained. A deep convolutional neural network (CNN), VGG19CRC, was trained by the migration learning method. According to the VGG19CRC model, adipose tissue scores were calculated for TCGA-CRC hematoxylin and eosin (H&E) images and images from patients at Zhujiang Hospital of Southern Medical University and First People's Hospital of Chenzhou. Kaplan-Meier (KM) analysis was used to compare the overall survival (OS) of patients. The XCell and MCP-Counter algorithms were used to evaluate the immune cell scores of the patients. Gene set enrichment analysis (GSEA) and single-sample GSEA (ssGSEA) were used to analyze upregulated and downregulated pathways. In TCGA-CRC, patients with high-adipocytes (high-ADI) CRC had significantly shorter OS times than those with low-ADI CRC. In a validation queue from Zhujiang Hospital of Southern Medical University (Local-CRC1), patients with high-ADI had worse OS than CRC patients with low-ADI. In another validation queue from First People's Hospital of Chenzhou (Local-CRC2), patients with low-ADI CRC had significantly longer OS than patients with high-ADI CRC. We developed a deep convolution network to segment various tissues from pathological H&E images of CRC and automatically quantify ADI. This allowed us to further analyze and predict the survival of CRC patients according to information from their segmented pathological tissue images, such as tissue components and the tumor microenvironment.

摘要

研究表明,结直肠癌(CRC)周围的脂质微环境与CRC的发生、发展和转移密切相关。根据国家肿瘤疾病中心(NCT)、曼海姆大学医学中心(UMM)数据库和ImageNet数据集的病理图像,对一个名为VGG19的模型进行了预训练。通过迁移学习方法训练了一个深度卷积神经网络(CNN),即VGG19CRC。根据VGG19CRC模型,计算了TCGA-CRC苏木精和伊红(H&E)图像以及南方医科大学珠江医院和郴州市第一人民医院患者图像的脂肪组织评分。采用Kaplan-Meier(KM)分析比较患者的总生存期(OS)。使用XCell和MCP-Counter算法评估患者的免疫细胞评分。基因集富集分析(GSEA)和单样本GSEA(ssGSEA)用于分析上调和下调的通路。在TCGA-CRC中,高脂肪细胞(高ADI)CRC患者的OS时间明显短于低ADI CRC患者。在南方医科大学珠江医院的一个验证队列(Local-CRC1)中,高ADI患者的OS比低ADI CRC患者更差。在郴州市第一人民医院的另一个验证队列(Local-CRC2)中,低ADI CRC患者的OS明显长于高ADI CRC患者。我们开发了一个深度卷积网络,用于从CRC的病理H&E图像中分割各种组织,并自动量化ADI。这使我们能够根据分割后的病理组织图像中的信息,如组织成分和肿瘤微环境,进一步分析和预测CRC患者的生存情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b8c/9131178/ec8fb12a115f/fnut-09-869263-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验