Suppr超能文献

用于促进CO光还原的氧硫共掺杂多孔石墨相氮化碳纳米片的自组装合成

Self-Assembly Synthesis of Oxygen and Sulfur Co-Doped Porous Graphitic Carbon Nitride Nanosheets for Boosting CO Photoreduction.

作者信息

Cao Shihai, Yang Haocheng, Zeng Fan, Lu Yao, Chen Huan, Jiang Fang

机构信息

College of Environmental Engineering, Nanjing Institute of Technology, Nanjing, 211167, China.

Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.

出版信息

ChemSusChem. 2025 Feb 1;18(3):e202401570. doi: 10.1002/cssc.202401570. Epub 2024 Nov 5.

Abstract

Graphitic carbon nitride (CN) has garnered considerable attention in the field of visible-light CO photoreduction, but its efficiency remains limited by the intrinsic π-conjugated skeleton. Here, O and S were co-doped CN (O, S/CN) by a facile "hydrolysis + calcination" approach to modulate the physicochemical and electronic structure. Distinctive from S doped CN (SCN), O, S/CN owned porous layer structure with several nanosheets and less SO groups on the surface. The amount of heteroatom-doping was achieved by changing the hydrothermal temperature. The optimum O, S/CN-80 achieved moderate CO production rate of 1.29 μmol g h, which was 3.79 times as much as SCN (0.34 μmol g h). The O and most S atoms were substitutionally doped and the effect of S doped state on the improved efficiency of CO generation in O, S/CN was also explored based on the theoretical calculations. This work provides an inspiration to develop efficient dual-doped CN photocatalysts for photocatalytic CO reduction.

摘要

石墨相氮化碳(CN)在可见光驱动的CO光还原领域备受关注,但其效率仍受限于其固有的π共轭骨架。在此,通过简便的“水解+煅烧”方法对CN进行O和S共掺杂(O,S/CN)以调节其物理化学和电子结构。与S掺杂的CN(SCN)不同,O,S/CN具有由几个纳米片组成的多孔层结构且表面SO基团较少。通过改变水热温度实现杂原子掺杂量的调控。最佳的O,S/CN-80实现了1.29 μmol g⁻¹ h⁻¹的适中CO产率,是SCN(0.34 μmol g⁻¹ h⁻¹)的3.79倍。O和大多数S原子为取代掺杂,并且基于理论计算探究了S掺杂状态对O,S/CN中CO生成效率提高的影响。这项工作为开发用于光催化CO还原的高效双掺杂CN光催化剂提供了启发。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验