Suppr超能文献

基于拉曼光谱和拉曼成像的乳腺癌细胞新型 HER2 蛋白鉴定方法:分析验证研究。

A Novel HER2 Protein Identification Methodology in Breast Cancer Cells Using Raman Spectroscopy and Raman Imaging: An Analytical Validation Study.

机构信息

Laboratory of Laser Molecular Spectroscopy, Department of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590Lodz, Poland.

出版信息

J Med Chem. 2024 Oct 10;67(19):17629-17639. doi: 10.1021/acs.jmedchem.4c01591. Epub 2024 Sep 21.

Abstract

Conventional assays such as immunohistochemistry (IHC) and hybridization (ISH) used in clinical procedures for quantification of the human epidermal growth factor receptor-2 (HER2) status in breast cancer have many limitations. In the current study, we have used HER2 expression in a broad range of breast cancer phenotypes to explore the potential utility of a novel immunodetection technique using Raman spectroscopy and Raman imaging combined with artificial intelligence models. The correlations between the Raman method and conventional HER2 testing methodologies (IHC and ISH) have been tested. Raman measurements showed a strong linear correlation ( = 0.05, =0,9816) with IHC analysis in the studied breast cell lines: MCF-10A, MCF-7, MDA-MB-231, HTB-30 (SK-BR-3), and AU-565 represent normal, nontumorigenic epithelial cells, triple-positive breast carcinoma, and triple-negative breast cancer cell lines. Analytic testing of Raman spectroscopy and Raman imaging demonstrated that this method may offer advantages over the currently used diagnostic methodologies.

摘要

传统的检测方法,如免疫组织化学(IHC)和杂交(ISH),在临床程序中用于定量检测乳腺癌中的人类表皮生长因子受体-2(HER2)状态,但存在许多局限性。在本研究中,我们使用了广泛的乳腺癌表型中的 HER2 表达,来探索使用拉曼光谱和拉曼成像结合人工智能模型的新型免疫检测技术的潜在应用。已经测试了拉曼方法与传统的 HER2 检测方法(IHC 和 ISH)之间的相关性。拉曼测量结果显示,在研究的乳腺细胞系 MCF-10A、MCF-7、MDA-MB-231、HTB-30(SK-BR-3)和 AU-565 中,与 IHC 分析具有很强的线性相关性(=0.05,=0.9816),这些细胞系分别代表正常、非肿瘤上皮细胞、三阳性乳腺癌和三阴性乳腺癌细胞系。拉曼光谱和拉曼成像的分析测试表明,这种方法可能优于目前使用的诊断方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8162/11472312/318c8b399a35/jm4c01591_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验