Barfejani Arnavaz Hajizadeh, Rostami Mohammadreza, Rahimi Mohammad, Far Hossein Sabori, Gholizadeh Shahab, Behjat Morteza, Tarokhian Aidin
Royal College of Surgeons in Ireland, Dublin, Ireland.
Xi'an Jiaotong University, Xi'an, China.
Eur Arch Otorhinolaryngol. 2025 Mar;282(3):1653-1657. doi: 10.1007/s00405-024-08986-2. Epub 2024 Sep 21.
Anaplastic thyroid carcinoma (ATC) is a highly aggressive and lethal thyroid cancer subtype with a poor prognosis. Recent advancements in machine learning (ML) have the potential to improve survival predictions. This study aimed to develop and validate ML models using the SEER database to predict 3-month, 6-month, and 12-month (overall survival) OS in ATC patients.
Clinical and demographic data for patients with ATC from the SEER database (2004-2015) were utilized. Five ML algorithms-AdaBoost, support vector machines, gradient boosting classifiers, random forests, and naive Bayes-were evaluated. The data were split into training and testing sets (7:3 ratio), and the models were tuned using fivefold cross-validation. Model performance was assessed using the concordance index (C-index) and Brier score, with 95% confidence intervals reported.
The gradient boosting model achieved the greatest performance for 3-month survival (C-index: 0.8197, 95% CI 0.7682-0.8689; Brier score: 0.1802), and the AdaBoost model achieved the greatest performance in 6-month survival (C-index: 0.8473, 95% CI 0.7979-0.8933; Brier score: 0.1775). The SVC model showed superior performance for 12-month survival (C-index: 0.8347, 95% CI 0.7866-0.8816; Brier score: 0.1476). Using SHAP with a gradient boosting model, the top five features affecting 6-month OS were identified: surgery, the presence of stage IVC, radiation, chemotherapy, and tumor size. Treatment improved survival, while higher stages reduced survival, with smaller tumors generally linked to better outcomes.
ML algorithms can accurately predict short-term survival in ATC patients. These models can potentially guide clinical decision-making and individualized treatment strategies.
间变性甲状腺癌(ATC)是一种侵袭性极强且致命的甲状腺癌亚型,预后较差。机器学习(ML)的最新进展有可能改善生存预测。本研究旨在开发并验证使用监测、流行病学与最终结果(SEER)数据库的ML模型,以预测ATC患者3个月、6个月和12个月的总生存期(OS)。
利用SEER数据库(2004 - 2015年)中ATC患者的临床和人口统计学数据。评估了五种ML算法——AdaBoost、支持向量机、梯度提升分类器、随机森林和朴素贝叶斯。数据按7:3的比例分为训练集和测试集,并使用五重交叉验证对模型进行调优。使用一致性指数(C指数)和布里尔评分评估模型性能,并报告95%置信区间。
梯度提升模型在预测3个月生存率方面表现最佳(C指数:0.8197,95%置信区间0.7682 - 0.8689;布里尔评分:0.1802),AdaBoost模型在预测6个月生存率方面表现最佳(C指数:0.8473,95%置信区间0.7979 - 0.8933;布里尔评分:0.1775)。支持向量机模型在预测12个月生存率方面表现出色(C指数:0.8347,95%置信区间0.7866 - 0.8816;布里尔评分:0.1476)。使用SHAP和梯度提升模型,确定了影响6个月总生存期的前五个特征:手术、IVC期的存在、放疗、化疗和肿瘤大小。治疗可提高生存率,而更高分期会降低生存率,较小的肿瘤通常与更好的预后相关。
ML算法可以准确预测ATC患者的短期生存率。这些模型有可能指导临床决策和个体化治疗策略。