Suppr超能文献

使用机器学习对恶性卵巢甲状腺肿患者进行个体化生存预测和风险分层:一项基于人群并经外部验证的研究

Individualized survival prediction and risk stratification using machine learning for patients with malignant struma ovarii: a population-based study with external validation.

作者信息

Yan Shangcheng, Cao Zhen, Zhang Qiyao, Chen Bingrong, Wu Hao, Cao Hongtao, Li Xiaobin, Wang Yaqi, Wang Yalei, Chen Yonghui, Liu Ziwen

机构信息

Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Department of Nuclear Medicine and Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

出版信息

Gland Surg. 2025 Jun 30;14(6):1052-1065. doi: 10.21037/gs-2025-35. Epub 2025 Jun 26.

Abstract

BACKGROUND

Malignant struma ovarii (MSO) is a rare thyroid-type cancer originating in ovarian teratoma. Prognosis of MSO is less studied without unanimous staging or stratification system. This study aimed to developed and validated a machine learning (ML)-based model to predict overall survival (OS) for patients with MSO and to risk-stratify them.

METHODS

Patients with histologically confirmed MSO diagnosed in 1975-2021 from the Surveillance, Epidemiology, and End Results (SEER) program were identified as the training cohort. Patients in a systematic literature review were collected as the testing cohort. OS was selected as the outcome, while demographic, clinicopathological and therapeutic information were used as features. Following data encoding, imputing and scaling, univariate feature selection was performed. Cox proportional hazard (CoxPH), Cox with elastic net penalty (CoxNet), random survival forest (RSF), gradient boosting machine (GBM), and survival tree (ST) models were trained and tuned. Each model was evaluated on its c-index, time-dependent area under the curve (AUC), time-dependent Brier score (BS) and stratification ability in the training and the testing cohort respectively. The algorithm that performed the best in the testing cohort was finally chosen for SHapley Additive exPlanations (SHAP) interpretation and Streamlit web application deployment.

RESULTS

The study included 120 and 194 patients in the training and testing cohort respectively. At the end of follow-up (median time 115.5 and 32.5 months respectively), 101 (84.2%) and 181 patients (93.3%) survived respectively. RSF had the best performance in the testing cohort, possessing the highest c-index (0.841, 95% confidence interval: 0.732-0.916), the highest mean AUC (0.852), the lowest integrated BS (0.042), and the smallest P value (<0.001) on log-rank test comparing the stratified groups. According to SHAP, older age, hysterectomy, larger tumor size and more advanced American Joint Committee on Cancer stage had the strongest predictive power for worse OS among all 13 features. An interactive application (https://mso-surv.streamlit.app/) was then implemented which can display the predicted Kaplan-Meier curve, survival probability, risk stratification and the contributions of features for the output.

CONCLUSIONS

We reported the first externally tested time-to-event prognostic prediction model for MSO. ML algorithms enabled precise individual-patient prediction and stratification, and can potentially assist patient counselling and decision-making for treatment and surveillance.

摘要

背景

恶性卵巢甲状腺肿(MSO)是一种起源于卵巢畸胎瘤的罕见甲状腺型癌症。MSO的预后研究较少,且没有统一的分期或分层系统。本研究旨在开发并验证一种基于机器学习(ML)的模型,以预测MSO患者的总生存期(OS)并对其进行风险分层。

方法

将1975年至2021年在监测、流行病学和最终结果(SEER)计划中确诊的组织学确诊MSO患者确定为训练队列。系统文献综述中的患者作为测试队列收集。选择OS作为结局,同时将人口统计学、临床病理和治疗信息用作特征。在进行数据编码、插补和缩放后,进行单变量特征选择。训练并调整Cox比例风险(CoxPH)、带弹性网络惩罚的Cox(CoxNet)、随机生存森林(RSF)、梯度提升机(GBM)和生存树(ST)模型。分别在训练队列和测试队列中根据c指数、时间依赖性曲线下面积(AUC)、时间依赖性Brier评分(BS)和分层能力对每个模型进行评估。最终选择在测试队列中表现最佳的算法进行SHapley加性解释(SHAP)解释和Streamlit网络应用部署。

结果

该研究在训练队列和测试队列中分别纳入了120例和194例患者。在随访结束时(中位时间分别为115.5个月和32.5个月),分别有101例(84.2%)和181例患者(93.3%)存活。RSF在测试队列中表现最佳,在比较分层组的对数秩检验中具有最高的c指数(0.841,95%置信区间:0.732 - 0.916)、最高的平均AUC(0.852)、最低的综合BS(0.042)和最小的P值(<0.001)。根据SHAP,在所有13个特征中,年龄较大、子宫切除术、肿瘤较大以及美国癌症联合委员会分期较晚对较差的OS具有最强的预测能力。然后实施了一个交互式应用程序(https://mso-surv.streamlit.app/),该程序可以显示预测的Kaplan-Meier曲线、生存概率、风险分层以及特征对输出的贡献。

结论

我们报告了首个针对MSO的外部测试的事件发生时间预后预测模型。ML算法能够实现精确的个体患者预测和分层,并有可能辅助患者咨询以及治疗和监测的决策制定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c40/12261249/0c756b39d234/gs-14-06-1052-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验