Suppr超能文献

用于无创血压估计的机器学习方法综述。

A review of machine learning methods for non-invasive blood pressure estimation.

作者信息

Pal Ravi, Le Joshua, Rudas Akos, Chiang Jeffrey N, Williams Tiffany, Alexander Brenton, Joosten Alexandre, Cannesson Maxime

机构信息

Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California Los Angeles, Ronald Reagan UCLA Medical Center, 757 Westwood Plaza, Los Angeles, CA, 90095, USA.

Larner College of Medicine, University of Vermont, Burlington, USA.

出版信息

J Clin Monit Comput. 2025 Feb;39(1):95-106. doi: 10.1007/s10877-024-01221-7. Epub 2024 Sep 21.

Abstract

Blood pressure is a very important clinical measurement, offering valuable insights into the hemodynamic status of patients. Regular monitoring is crucial for early detection, prevention, and treatment of conditions like hypotension and hypertension, both of which increasing morbidity for a wide variety of reasons. This monitoring can be done either invasively or non-invasively and intermittently vs. continuously. An invasive method is considered the gold standard and provides continuous measurement, but it carries higher risks of complications such as infection, bleeding, and thrombosis. Non-invasive techniques, in contrast, reduce these risks and can provide intermittent or continuous blood pressure readings. This review explores modern machine learning-based non-invasive methods for blood pressure estimation, discussing their advantages, limitations, and clinical relevance.

摘要

血压是一项非常重要的临床测量指标,能为了解患者的血流动力学状况提供有价值的见解。定期监测对于低血压和高血压等病症的早期发现、预防和治疗至关重要,这两种病症都会因多种原因导致发病率上升。这种监测可以通过侵入性或非侵入性方式进行,且可间歇性或连续性地进行。侵入性方法被视为金标准,可提供连续测量,但它具有更高的并发症风险,如感染、出血和血栓形成。相比之下,非侵入性技术可降低这些风险,并能提供间歇性或连续性的血压读数。本综述探讨了基于现代机器学习的非侵入性血压估计方法,讨论了它们的优点、局限性和临床相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验