Department of Statistics and Data Science, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea.
Daegu-Gyeongbuk Research Division, Electronics and Telecommunications Research Institute (ETRI), 1, Techno sunhwan-ro 10-gil, Yuga-eup, Dalseong-gun, 42994, Daegu, Republic of Korea.
Comput Biol Med. 2024 Dec;183:109216. doi: 10.1016/j.compbiomed.2024.109216. Epub 2024 Oct 8.
With the rapid advancements in machine learning, its applications in the medical field have garnered increasing interest, particularly in non-invasive health monitoring methods. Blood pressure (BP) estimation using Photoplethysmogram (PPG) signals presents a promising opportunity for real-time, continuous monitoring. However, existing models often struggle with generalization, especially for high-risk groups like hypotension and hypertension, where precise predictions are crucial. In this study, we propose Global Prompt and Prompt Generator (GloGen), a robust few-shot transfer learning framework designed to improve BP estimation using PPG signals. GloGen employs a dual-prompt learning approach, combining Global Prompt (GP) for capturing shared features across signals and an Instance-wise Prompt (IP) for generating personalized prompts for each signal. To enhance model robustness, we also introduce Variance Penalty (VP) that ensures diversity among the generated prompts. Experimental results on benchmark datasets demonstrate that GloGen significantly outperforms conventional methods, both in terms of accuracy and robustness, particularly in underrepresented BP groups, even in scenarios with limited training data. GloGen thus stands out as an efficient solution for real-time, non-invasive BP estimation, with great potential for use in healthcare settings where data is scarce and diverse populations need to be accurately monitored.
随着机器学习的快速发展,其在医学领域的应用引起了越来越多的关注,特别是在非侵入性健康监测方法方面。利用光体积描记图(PPG)信号估计血压(BP)为实时、连续监测提供了一个很有前途的机会。然而,现有的模型通常在泛化能力方面存在困难,特别是对于低血压和高血压等高危人群,准确的预测至关重要。在这项研究中,我们提出了全局提示和提示生成器(GloGen),这是一个强大的少样本迁移学习框架,旨在通过 PPG 信号改善 BP 估计。GloGen 采用双提示学习方法,结合全局提示(GP)捕捉信号之间的共享特征,以及实例提示(IP)为每个信号生成个性化提示。为了提高模型的稳健性,我们还引入了方差惩罚(VP),确保生成的提示之间具有多样性。在基准数据集上的实验结果表明,GloGen 在准确性和稳健性方面都显著优于传统方法,特别是在代表性不足的 BP 群体中,即使在训练数据有限的情况下也是如此。因此,GloGen 是一种实时、非侵入性 BP 估计的有效解决方案,在数据稀缺且需要准确监测多样化人群的医疗保健环境中具有很大的应用潜力。