Suppr超能文献

人工智能在危重症及外科手术患者血流动力学评估中的应用:聚焦临床应用

AI for the hemodynamic assessment of critically ill and surgical patients: focus on clinical applications.

作者信息

Michard Frederic, Mulder Marijn P, Gonzalez Filipe, Sanfilippo Filippo

机构信息

MiCo, Vallamand, Switzerland.

Cardiovascular and Respiratory Physiology, University of Twente, Enschede, The Netherlands.

出版信息

Ann Intensive Care. 2025 Feb 24;15(1):26. doi: 10.1186/s13613-025-01448-w.

Abstract

Several artificial intelligence (AI)-driven tools have emerged for the hemodynamic evaluation of critically ill and surgical patients. This article provides an overview of current developments and potential clinical applications of machine learning (ML) for blood pressure measurements, hypotension prediction, hemodynamic profiling, and echocardiography. ML algorithms have shown promise in enabling continuous, non-invasive blood pressure monitoring by analyzing pulse oximetry waveforms, though these methods require periodic calibration with traditional oscillometric brachial cuffs. Additionally, a variety of ML models have been trained to forecast impending hypotension. However, clinical research indicates that these algorithms often primarily rely on mean arterial pressure, leading to questions about their added predictive value. The issue of false-positive alerts is also significant and can result in unwarranted clinical interventions. In terms of hemodynamic profiling, ML algorithms have been proposed to automatically classify patients into specific hemodynamic endotypes. However, current evidence suggests these models tend to replicate conventional hemodynamic profiles found in medical textbooks or depicted on advanced hemodynamic monitors. This raises questions about their practical clinical utility, especially given occasional discrepancies that could impact treatment decisions. Point-of-care ultrasound (POCUS) has gained traction for evaluating cardiac function in patients experiencing circulatory shock. ML algorithms now embedded in some POCUS systems can assist by recognizing ultrasound images, guiding users for optimal imaging, automating and reducing the variability of key echocardiographic measurements. These capabilities are especially beneficial for novice operators, potentially enhancing accuracy and confidence in clinical decision-making. In conclusion, while several AI-based technologies show promise for refining hemodynamic assessment in both critically ill and surgical patients, their clinical value varies. Comprehensive validation studies and real-world testing are essential to identify which innovations will genuinely contribute to improving the quality of care.

摘要

已经出现了几种由人工智能(AI)驱动的工具,用于对危重症患者和外科手术患者进行血流动力学评估。本文概述了机器学习(ML)在血压测量、低血压预测、血流动力学分析和超声心动图方面的当前进展和潜在临床应用。ML算法通过分析脉搏血氧饱和度波形,在实现连续、无创血压监测方面显示出前景,不过这些方法需要使用传统的示波法肱动脉袖带进行定期校准。此外,已经训练了多种ML模型来预测即将发生的低血压。然而,临床研究表明,这些算法通常主要依赖平均动脉压,这引发了对其附加预测价值的质疑。假阳性警报问题也很严重,可能导致不必要的临床干预。在血流动力学分析方面,有人提出ML算法可将患者自动分类为特定的血流动力学亚型。然而,目前的证据表明,这些模型往往会复制医学教科书中或先进血流动力学监测仪上显示的传统血流动力学特征。这引发了对其实际临床效用的质疑,特别是考虑到偶尔的差异可能会影响治疗决策。床旁超声(POCUS)在评估循环休克患者的心脏功能方面越来越受到关注。现在一些POCUS系统中嵌入的ML算法可以通过识别超声图像、指导用户进行最佳成像、自动执行并减少关键超声心动图测量的变异性来提供帮助。这些功能对新手操作员特别有益,可能会提高临床决策的准确性和信心。总之,虽然几种基于AI的技术在完善危重症患者和外科手术患者的血流动力学评估方面显示出前景,但其临床价值各不相同。全面的验证研究和实际测试对于确定哪些创新将真正有助于提高护理质量至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ab4/11850697/d43bdc089169/13613_2025_1448_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验