Waters Corporation, Core Research/Fundamental, Milford, MA, 01757, USA.
J Chromatogr A. 2024 Nov 8;1736:465379. doi: 10.1016/j.chroma.2024.465379. Epub 2024 Sep 17.
Slalom chromatography (SC) re-emerged in 2024 due to the availability of low adsorption ultra-high pressure liquid chromatography (UHPLC) packed columns/instruments and large modalities being investigated in the context of cell and gene therapies. The physico-chemical principles of SC retention combined with hydrodynamic chromatography (HDC) exclusion have been recently reported. In SC, DNA macromolecules are retarded because: (1) they can be stretched to lengths comparable to the particle diameter, and (2) their elastic relaxation time is long enough to maintain them in non-equilibrium extended conformations under regular UHPLC shear flow conditions. Here, a quantitative HDC-SC retention model is consolidated. A general plate height model accounting for the band broadening of long DNA biopolymers along packed beds is also derived for supporting method development and predicting speed-resolution performance in SC. For illustration, the chromatographic speed-resolution properties in SC are predicted for the separation of specific critical pairs (4.0/4.5, 10/11, and 25/27 kbp) of linear dsDNA polymers. The calculations are performed for two available custom-made particle sizes, d= 1.7 and 2.5μm, at a constant pressure of 10,000 psi. The predictions are directly validated from experimental data acquired using low adsorption MaxPeak 4.6 mm i.d. Columns packed with 1.7μm BEH 45 Å (15 cm long column) and 2.5μm BEH 125 Å (30 cm long column) Particles, and by injecting six linear dsDNAs (λ DNA-Hind III Digest). The LC system is very low dispersion ACQUITY UPLC I-class PLUS System, and the mobile phase is a 100 mM phosphate buffer at pH 8. Maximum resolution is always achieved when the average extended lengths of linear dsDNAs are equal to a critical length, which is proportional to the particle diameter and to the square root of the applied shear rate. Most advantageously, the experimental results reveal that the relaxation times of linear dsDNAs observed under shear flow conditions are two orders of magnitude shorter than those expected in the absence of flow: this enables the detection of the longest linear dsDNAs up to 25 kbp without irremediable loss in column performance. Finally, the retention-efficiency model elaborated in this work can be used to rapidly anticipate and develop methods (selection of particle size, column length, and operating pressure) for any targeted DNA and time-resolution constraints.
由于低吸附超高压液相色谱 (UHPLC) 填充柱/仪器的可用性以及在细胞和基因治疗背景下研究的大型模式,逆流色谱 (SC) 于 2024 年重新出现。最近报道了 SC 保留的物理化学原理与流体动力学色谱 (HDC) 排除的结合。在 SC 中,DNA 大分子被延迟,因为:(1) 它们可以被拉伸到与颗粒直径相当的长度,并且 (2) 它们的弹性松弛时间足够长,可以在常规 UHPLC 剪切流条件下保持它们处于非平衡的扩展构象。在这里,整合了一个定量的 HDC-SC 保留模型。还推导出了一个通用的板高模型,用于在填充床中描述长 DNA 生物聚合物的带宽展宽,以支持方法开发并预测 SC 中的速度分辨率性能。为了说明,预测了 SC 中分离特定关键对(4.0/4.5、10/11 和 25/27 kbp)的线性 dsDNA 聚合物的色谱速度分辨率特性。在恒定压力为 10,000 psi 下,针对两种可用的定制粒径,d=1.7 和 2.5μm,进行了计算。预测结果直接通过使用低吸附 MaxPeak 4.6mm i.d. Columns 获得的实验数据进行验证,这些数据是使用填充有 1.7μm BEH 45Å(15cm 长柱)和 2.5μm BEH 125Å(30cm 长柱)颗粒的柱子,并通过注射六种线性 dsDNA(λ DNA-Hind III Digest)获得。LC 系统是非常低分散度的 ACQUITY UPLC I 类 PLUS 系统,流动相为 100mM 磷酸盐缓冲液,pH 值为 8。当线性 dsDNA 的平均扩展长度等于临界长度时,总是可以达到最大分辨率,该临界长度与粒径成正比,与应用的剪切速率的平方根成正比。最有利的是,实验结果表明,在线性 dsDNA 剪切流条件下观察到的松弛时间比没有流动时短两个数量级:这使得可以在不损害柱性能的情况下检测最长的线性 dsDNA 高达 25 kbp。最后,本文阐述的保留效率模型可用于快速预测和开发方法(选择粒径、柱长和操作压力),以满足任何目标 DNA 和时间分辨率的限制。