Suppr超能文献

基于机器学习模型的全国数据库分析:预测翻修全膝关节置换术后的住院时间延长。

Predicting prolonged length of stay following revision total knee arthroplasty: A national database analysis using machine learning models.

机构信息

Bioengineering Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Bioengineering Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

出版信息

Int J Med Inform. 2024 Dec;192:105634. doi: 10.1016/j.ijmedinf.2024.105634. Epub 2024 Sep 18.

Abstract

BACKGROUND

As the number of revision total knee arthroplasty (TKA) continues to rise, close attention has been paid to factors influencing postoperative length of stay (LOS). The aim of this study is to develop generalizable machine learning (ML) algorithms to predict extended LOS following revision TKA using data from a national database.

METHODS

23,656 patients undergoing revision TKA between 2013 and 2020 were identified using the American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database. Patients with missing data and those undergoing re-revision or conversion from unicompartmental knee arthroplasty were excluded. Four ML algorithms were applied and evaluated based on their (1) ability to distinguish between at-risk and not-at-risk patients, (2) accuracy, (3) calibration, and (4) clinical utility.

RESULTS

All four ML predictive algorithms demonstrated good accuracy, calibration, clinical utility, and discrimination, with all models achieving a similar area under the curve (AUC) (AUC=AUC=AUC=0.75, AUC=0.74). The most important predictors of prolonged LOS were found to be operative time, preoperative diagnosis of sepsis, and body mass index (BMI).

CONCLUSIONS

ML models developed in this study demonstrated good performance in predicting extended LOS in patients undergoing revision TKA. Our findings highlight the importance of utilizing nationally representative patient data for model development. Prolonged operative time, preoperative sepsis, BMI, and elevated preoperative serum creatinine and BUN were noted to be significant predictors of prolonged LOS. Knowledge of these associations may aid with patient-specific preoperative planning, discharge planning, patient counseling, and cost containment with revision TKA.

摘要

背景

随着翻修全膝关节置换术(TKA)数量的持续增加,人们密切关注影响术后住院时间(LOS)的因素。本研究旨在利用国家数据库中的数据,开发可推广的机器学习(ML)算法来预测翻修 TKA 后延长 LOS。

方法

使用美国外科医师学会国家手术质量改进计划(ACS-NSQIP)数据库,确定 2013 年至 2020 年间接受翻修 TKA 的 23656 例患者。排除数据缺失患者和接受再次翻修或由单髁膝关节置换术转为翻修的患者。应用四种 ML 算法,并根据其(1)区分高危和非高危患者的能力,(2)准确性,(3)校准和(4)临床实用性进行评估。

结果

所有四种 ML 预测算法均显示出良好的准确性、校准、临床实用性和区分度,所有模型的曲线下面积(AUC)均相似(AUC=AUC=AUC=0.75,AUC=0.74)。发现延长 LOS 的最重要预测因素是手术时间、术前败血症诊断和体重指数(BMI)。

结论

本研究中开发的 ML 模型在预测接受翻修 TKA 的患者延长 LOS 方面表现出良好的性能。我们的研究结果强调了利用全国代表性患者数据进行模型开发的重要性。延长手术时间、术前败血症、BMI 以及术前血清肌酐和 BUN 升高被认为是延长 LOS 的显著预测因素。了解这些关联可能有助于针对特定患者的术前计划、出院计划、患者咨询以及控制翻修 TKA 的成本。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验