Suppr超能文献

深度学习模型预测新兴污染物在植物体内的吸收,包括植物高分子成分的作用。

Deep learning models for predicting plant uptake of emerging contaminants by including the role of plant macromolecular compositions.

机构信息

Department of Engineering Technology, Savannah State University, Savannah, GA 31404, USA.

Department of Engineering Technology, Savannah State University, Savannah, GA 31404, USA.

出版信息

J Hazard Mater. 2024 Dec 5;480:135921. doi: 10.1016/j.jhazmat.2024.135921. Epub 2024 Sep 19.

Abstract

Deep learning models can predict uptake of emerging contaminants in plants with improved accuracy because they leverage advanced data-driven approaches to capture non-linear relationships that traditional models struggle to address. Traditional models suffer from low accuracy in predicting transpiration stream concentration factor (TSCF) and root concentration factor (RCF). This study applied deep neural networks (DNN), recurrent neural networks (RNN), and long short-term memory (LSTM) to enhance the accuracy of predictive models for TSCF and RCF. The three models used nine chemical properties and two plant root macromolecular compositions for predicting TSCF and RCF. The results indicated that deep learning models predict TSCF and RCF with improved accuracy compared to mechanistic models. The coefficient of determination (R) for the DNN, RNN, and LSTM models in predicting TSCF was 0.62, 0.67, and 0.56, respectively. The corresponding mean squared error (MSE) on the test set for the models was 0.055, 0.035, and 0.060, respectively. The R for the DNN, RNN, and LSTM models in predicting RCF was 0.90, 0.91, and 0.84, respectively. The corresponding MSE for the models was 0.124, 0.071, and 0.126, respectively. The results of feature extraction using extreme gradient boosting underlined the importance of lipophilicity and root lipid fraction.

摘要

深度学习模型可以通过利用先进的数据驱动方法来捕捉传统模型难以解决的非线性关系,从而提高预测植物中新兴污染物摄取的准确性。传统模型在预测蒸腾流浓度因子 (TSCF) 和根浓度因子 (RCF) 时准确性较低。本研究应用深度神经网络 (DNN)、递归神经网络 (RNN) 和长短期记忆 (LSTM) 来提高 TSCF 和 RCF 预测模型的准确性。这三个模型使用了九种化学性质和两种植物根高分子组成来预测 TSCF 和 RCF。结果表明,与机械模型相比,深度学习模型可以更准确地预测 TSCF 和 RCF。DNN、RNN 和 LSTM 模型在预测 TSCF 时的决定系数 (R) 分别为 0.62、0.67 和 0.56。模型在测试集上的均方误差 (MSE) 分别为 0.055、0.035 和 0.060。DNN、RNN 和 LSTM 模型在预测 RCF 时的 R 分别为 0.90、0.91 和 0.84。模型在测试集上的均方误差 (MSE) 分别为 0.124、0.071 和 0.126。极端梯度提升的特征提取结果强调了亲脂性和根脂分的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验