Suppr超能文献

人工智能增强心电图诊断心脏淀粉样变性:系统评价和荟萃分析。

Artificial intelligence-enhanced electrocardiogram for the diagnosis of cardiac amyloidosis: A systemic review and meta-analysis.

机构信息

Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA.

Mercy St Vincent Medical Center, Toledo, OH, USA.

出版信息

Curr Probl Cardiol. 2024 Dec;49(12):102860. doi: 10.1016/j.cpcardiol.2024.102860. Epub 2024 Sep 19.

Abstract

BACKGROUND

Diagnosis of cardiac amyloidosis (CA) is often delayed due to variability in clinical presentation. The electrocardiogram (ECG) is one of the most common and widely available tools for assessing cardiovascular diseases. Artificial intelligence (AI) models analyzing ECG have recently been developed to detect CA, but their pooled accuracy is yet to be evaluated.

METHODS

We searched the Scopus, MEDLINE, and Cochrane CENTRAL databases until April 2024 for studies assessing AI-enhanced ECG diagnosis of CA. Studies reporting findings from derivation and validation cohorts were included. Studies combining other diagnostic modalities, such as echocardiography, were excluded. The outcome of interest was the area under the receiver operating characteristic curve (AUC) for overall CA and subtypes transthyretin amyloidosis (ATTR) and light chain amyloidosis (AL). Analysis was done using RevMan 5.4.1 general inverse variance random effects model, pooling data for AUC and 95 % confidence intervals (CI).

RESULTS

Five studies comprising seven cohorts met the eligibility criteria. The total derivation and validation cohorts were 8,639 and 3,843, respectively, although one study did not describe this data. The AUC was 0.89 (95 % CI, 0.86-0.91) for cardiac amyloidosis, 0.90 (95 % CI, 0.86-0.95) for ATTR amyloidosis, and 0.80 (95 % CI, 0.80-0.93) for AL amyloidosis.

CONCLUSION

AI-enhanced ECG models effectively detect CA and may provide a valuable tool for the early detection and intervention of this disease.

摘要

背景

由于临床表现的多样性,心脏淀粉样变性(CA)的诊断常常被延误。心电图(ECG)是评估心血管疾病最常用和最广泛的工具之一。最近已经开发出分析 ECG 的人工智能(AI)模型来检测 CA,但它们的汇总准确性仍有待评估。

方法

我们在 Scopus、MEDLINE 和 Cochrane CENTRAL 数据库中搜索了截至 2024 年 4 月的研究,这些研究评估了 AI 增强型 ECG 诊断 CA。纳入了报告从推导和验证队列中得出的发现的研究。排除了结合其他诊断模式(如超声心动图)的研究。感兴趣的结果是总体 CA 和转甲状腺素淀粉样变性(ATTR)和轻链淀粉样变性(AL)亚型的接收者操作特征曲线(AUC)下的面积。使用 RevMan 5.4.1 一般逆方差随机效应模型进行分析,对 AUC 和 95%置信区间(CI)进行数据汇总。

结果

符合入选标准的有五项研究,包括七个队列。推导和验证队列的总人数分别为 8639 人和 3843 人,但有一项研究没有描述这部分数据。AUC 为心脏淀粉样变性 0.89(95%CI,0.86-0.91),ATTR 淀粉样变性 0.90(95%CI,0.86-0.95),AL 淀粉样变性 0.80(95%CI,0.80-0.93)。

结论

AI 增强型 ECG 模型可有效检测 CA,并可能为早期发现和干预该疾病提供有价值的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验