He Zizhuang, Shi Lingzi, Sun Ran, Ding Lianfei, He Mukun, Li Jiaming, Guo Hua, Gao Tiande, Liu Panbo
School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, People's Republic of China.
School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
Nanomicro Lett. 2024 Sep 22;17(1):7. doi: 10.1007/s40820-024-01516-z.
Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching, adjusting dielectric/magnetic resonance and promoting electromagnetic (EM) wave absorption, but still exist a significant challenging in regulating local phase evolution. Herein, accordion-shaped Co/CoO@N-doped carbon nanosheets (Co/CoO@NC) with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and low-temperature oxidation process. The results indicate that the surface epitaxial growth of crystal CoO domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components, which are beneficial for optimizing impedance matching and interfacial polarization. Moreover, gradient magnetic heterointerfaces simultaneously realize magnetic coupling, and long-range magnetic diffraction. Specifically, the synthesized Co/CoO@NC absorbents display the strong electromagnetic wave attenuation capability of - 53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz, both are superior to those of single magnetic domains embedded in carbon matrix. This design concept provides us an inspiration in optimizing interfacial polarization, regulating magnetic coupling and promoting electromagnetic wave absorption.
梯度磁性异质界面在优化阻抗匹配、调节介电/磁共振以及促进电磁波吸收方面注入了无限活力,但在调控局部相演变方面仍存在重大挑战。在此,通过高温碳化和低温氧化协同过程制备了具有梯度磁性异质界面的手风琴状Co/CoO@N掺杂碳纳米片(Co/CoO@NC)。结果表明,局部Co纳米颗粒上晶体CoO域的表面外延生长实现了磁异质原子组分的调控,这有利于优化阻抗匹配和界面极化。此外,梯度磁性异质界面同时实现了磁耦合和长程磁衍射。具体而言,合成的Co/CoO@NC吸收剂在厚度为3.0 mm时显示出-53.5 dB的强电磁波衰减能力,有效吸收带宽为5.36 GHz,两者均优于嵌入碳基体中的单磁畴吸收剂。这一设计理念为我们在优化界面极化、调控磁耦合和促进电磁波吸收方面提供了启示。